RESUMO
The hybrid type of pavement called semi-flexible or grouted macadam has gained popularity over the last few decades in various countries, as it provides significant advantages over both rigid and conventional flexible pavements. The semi-flexible pavement surface consists of an open-graded asphalt mixture with high percentage voids into which flowable cementitious slurry is allowed to penetrate due to gravitational effect. Several researchers have conducted laboratory, as well as field, experiments on evaluating the performance of semi-flexible layers using different compositions of cementitious grouts. The composition of grouts (i.e., water/cement ratio, superplasticizer, polymers, admixtures, and other supplementary materials) has a significant effect on the performance of grouts and semi-flexible mixtures. A comprehensive review of cementitious grouts and their effect on the performance of semi-flexible layers are presented and summarized in this review study. The effect of byproducts and other admixtures/additives on the mechanical properties of grouts are also discussed. Finally, recommendations on the composition of cementitious grouts have been suggested.
RESUMO
Moisture damage in hot mix asphalt pavements is a periodic but persistent problem nowadays, even though laboratory testing is performed to identify different moisture-susceptible mixtures. In this study, a Hamburg Wheel Tracking device (HWTD) was used for rutting tests which were conducted on control and a high percentage of recycled asphalt pavement (RAP), i.e., 30%, 50% and 100% of virgin mixtures, under air dry and water-immersed conditions. Similarly, the extracted bitumen from RAP was tested for binder physical properties. Results showed that the asphalt mixtures containing RAP have less rut depth as compared to the control mix both in air dry and immersion conditions and hence showed better anti-rutting properties and moisture stability. Stripping performance of control and RAP containing mixtures was also checked, concluding that the RAP mixture was greatly dependent on the interaction between the binder (virgin plus aged) and aggregates.