RESUMO
Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Células-Tronco Embrionárias/efeitos dos fármacos , Interleucina-1alfa/farmacologia , Neuroglia/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Citocinas/metabolismo , Citocinas/farmacologia , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Encefalite/metabolismo , Encefalite/fisiopatologia , Gliose/metabolismo , Gliose/fisiopatologia , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Receptores de Interleucina-1/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Células-Tronco/citologia , Células-Tronco/metabolismoRESUMO
PURPOSE: We previously identified novel thiazole derivatives able to reduce histone acetylation and histone acetyltransferase (HAT) activity in yeast. Among these compounds, 3-methylcyclopentylidene-[4-(4'-chlorophenyl)thiazol-2-yl]hydrazone (CPTH6) has been selected and used throughout this study. EXPERIMENTAL DESIGN: The effect of CPTH6 on histone acetylation, cell viability and differentiation, cell-cycle distribution, and apoptosis in a panel of acute myeloid leukemia and solid tumor cell lines has been evaluated. RESULTS: Here, we showed that CPTH6 leads to an inhibition of Gcn5 and pCAF HAT activity. Moreover, it inhibits H3/H4 histones and α-tubulin acetylation of a panel of leukemia cell lines. Concentration- and time-dependent inhibition of cell viability, paralleled by accumulation of cells in the G(0)/G(1) phase and depletion from the S/G(2)M phases, was observed. The role of mitochondrial pathway on CPTH6-induced apoptosis was shown, being a decrease of mitochondrial membrane potential and the release of cytochrome c, from mitochondria to cytosol, induced by CPTH6. Also the involvement of Bcl-2 and Bcl-xL on CPTH6-induced apoptosis was found after overexpression of the two proteins in leukemia cells. Solid tumor cell lines from several origins were shown to be differently sensitive to CPTH6 treatment in terms of cell viability, and a correlation between the inhibitory efficacy on H3/H4 histones acetylation and cytotoxicity was found. Differentiating effect on leukemia and neuroblastoma cell lines was also induced by CPTH6. CONCLUSIONS: These results make CPTH6 a suitable tool for discovery of molecular targets of HAT and, potentially, for the development of new anticancer therapies, which warrants further investigations.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Tiazóis/farmacologia , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Acetilação , Animais , Antineoplásicos/efeitos adversos , Proteínas Reguladoras de Apoptose/metabolismo , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda , Camundongos , Neuroblastoma , Tiazóis/efeitos adversos , Tubulina (Proteína)/metabolismoRESUMO
We examined the autocrine/paracrine role of interleukin-8 (CXCL8) and the functional significance of CXCL8 receptors, CXCR1 and CXCR2, in human malignant melanoma proliferation, migration, invasion and angiogenesis. We found that a panel of seven cell lines, even though at different extent, secreted CXCL8 protein, and expressed CXCR1 and CXCR2 independently from the CXCL8 expression, but depending on the oxygen level. In fact, hypoxic exposure increases the expression of CXCR1 and CXCR2. The cell proliferation of both M20 and A375SM lines, expressing similar levels of both CXCR1 and CXCR2 but secreting low and high amounts of CXCL8, respectively, was significantly enhanced by CXCL8 exposure and reduced by CXCL8, CXCR1 and CXCR2 neutralising antibodies, indicating the autocrine/paracrine role of CXCL8 in melanoma cell proliferation. Moreover, an increased invasion and migration in response to CXCL8 was observed in several cell lines, and a further enhancement evidenced under hypoxic conditions. A CXCL8-dependent in vivo vessel formation, evaluated through a matrigel assay, was also demonstrated. Furthermore, when neutralising antibodies against CXCR1 or CXCR2 were used, only the involvement of CXCR2, but not CXCR1 was observed on cell migration and invasion, while both receptors played a role in angiogenesis. In summary, our data demonstrate that CXCL8 induces cell proliferation and angiogenesis through both receptors and that CXCR2 plays an important role in regulating the CXCL8-mediated invasive and migratory behaviour of human melanoma cells. Thus, blocking the CXCL8 signalling axis promises an improvement for the therapy of cancer and, in particular, of metastatic melanoma.