RESUMO
A new approach for producing gluten-free pasta from hydrated (50⯰C, 20â¯min) rice kernels, skipping the grinding step, was explored. Magnetic Resonance Imaging (MRI) was used to study the hydration kinetics of rice, by monitoring the time evolution of both proton density and water transverse-relaxation rate during water diffusion. Results showed that the optimal water diffusion was reached after 180â¯min, allowing the extrusion of hydrated rice kernels into pasta. MRI analysis also highlighted in cooked pasta gradients of water distribution and mobility, in agreement with the high shear force that was measured using the Kramer cell (1066.5 vs 896.4â¯N). The high hydration in the external layers of pasta did not negatively affect the cooking quality (cooking loss, compression energy, firmness) of the product. MRI analysis provided experimental evidence for the optimization of early steps in the technological process of grains for the production of gluten-free pasta.
Assuntos
Culinária/métodos , Farinha/análise , Imageamento por Ressonância Magnética , Oryza/química , Água/química , CinéticaRESUMO
Presence and stability of a protein network was evaluated by fluorescence spectroscopy, by protein solubility studies, and by assessing the accessibility of protein thiols in samples of commercial Italian semolina pasta made in industrial plants using different processes. The pasting properties of starch in each sample were evaluated by means of a viscoamylograph. Magnetic resonance imaging (MRI) was used to evaluate water distribution and water mobility in dry pasta, and at various cooking times. The molecular information derived from these studies was related to sensory indices, indicating that protein reticulation was dependent on the process conditions, which affected water penetration, distribution, and mobility during cooking. Products with a crosswise gradient of water mobility once cooked had the best sensory scores at optimal cooking time, whereas products with a less compact protein network performed better when slightly overcooked.
Assuntos
Farinha/análise , Análise de Alimentos , Culinária , Humanos , Espectroscopia de Ressonância Magnética , Proteínas/análise , Amido/química , Paladar , Água/análiseRESUMO
The relationship between iron uptake by aporubredoxins (apoRds) and formation of native holorubredoxins (holoRd), including their Fe(SCys)(4) sites, was studied. In the absence of denaturants, apoRds exhibited spectroscopic features consistent with structures very similar to those of the folded holoRds. However, additions of either ferric or ferrous salts to the apoRds in the absence of denaturants gave less than 40% recovery of the native holoRd circular dichroism and UV-vis spectroscopic features. In the presence of either 6 M urea or 6 M guanidine hydrochloride, the nativelike structural features of the apoRds were absent. Nevertheless, nearly quantitative recoveries of the native holoRd spectroscopic features were achieved by addition of either ferric or ferrous salts to the denatured apoRds without diluting the denaturant. Consistent with this observation, the native spectroscopic features were unaffected by addition of the same denaturant concentrations to the as-isolated holoRds. Denaturing concentrations of urea or guanidine hydrochloride also increased the rates of holoRd recoveries from apoRds and ferrous salts. Mass spectrometry confirmed that ferric iron binding to the denatured apoRds precedes the recoveries of protein secondary structures and Fe(SCys)(4) sites. Thus, iron binding to the apoRds guides, both kinetically and thermodynamically, refolding to the native holoRd structures. Our results imply that the ferrous oxidation state would more efficiently drive formation of the native holoRd structure from the nascent apoprotein in vivo, but that the Fe(SCys)(4) site must attain the ferric state in order to achieve its native structure.