RESUMO
The Attention Training Technique (ATT) and Mindful Self-Compassion (MSC) are two promising psychological interventions. ATT is a 12-min auditory exercise designed to strengthen attentional control and promote external focus of attention, while MSC uses guided meditation and exercises designed to promote self-compassion. In this randomized controlled trial (RCT), a three-session intervention trial was conducted in which university students were randomly assigned to either an ATT-group (n = 40) or a MSC-group (n = 41). The students were not assessed with diagnostic interviews but had self-reported symptoms of depression, anxiety, or stress. Participants listened to audiotapes of ATT or MSC before discussing in groups how to apply these principles for their everyday struggles. Participants also listened to audiotapes of ATT and MSC as homework between sessions. Participants in both groups showed significant reductions in symptoms of anxiety and depression accompanied by significant increases in mindfulness, self-compassion, and attention flexibility post-intervention. These results were maintained at 6-month follow-up. Improvement in attention flexibility was the only significant unique predictor of treatment response. The study supports the use of both ATT and MSC for students with symptoms of depression and anxiety. Further, it suggests that symptom improvement is related to changes in attention flexibility across both theoretical frameworks. Future studies should focus on how to strengthen the ability for attention flexibility to optimize treatment for emotional disorder.
RESUMO
Lateral neck cysts and fistulae are considered to be a well-defined clinical entity which needs a precise knowledge of the development of the branchial system to have an appropriate and subsequent successful treatment. According to the recent classification cysts of I and II type and fistulae of I, II and III type can be recognized. In the former ultrasonography and Computerized Tomography represent the most appropriate diagnostic tools, while in the latter fistulography is preferred. An elective surgical excision seem to be resolutive in the majority of cases: on the contrary emergency surgery is related to a certain relapse of this pathology. 45 cases of branchial pathology are reported; diagnostic and therapeutic choices are then discussed.
Assuntos
Branquioma/diagnóstico , Branquioma/terapia , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/terapia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Resultado do TratamentoRESUMO
In modern taxonomy, DNA barcoding is particularly useful where biometric parameters are difficult to determine or useless owing to the poor quality of samples. These situations are frequent in parasitology. Here, we present an integrated study, based on both DNA barcoding and morphological analysis, on cestodes belonging to the genus Taenia, for which biodiversity is still largely underestimated. In particular, we characterized cestodes from Italian wildcats (Felis silvestris silvestris), free-ranging domestic cats (Felis silvestris catus) and hybrids populations. Adult taeniids were collected by post-mortem examinations of the hosts and morphologically identified as Taenia taeniaeformis. We produced cox1 barcode sequences for all the analysed specimens, and we compared them with reference sequences of individuals belonging to the genus Taenia retrieved from GenBank. In order to evaluate the performance of a DNA barcoding approach to discriminate these parasites, the strength of correlation between species identification based on classical morphology and the molecular divergence of cox1 sequences was measured. Our study provides clear evidence that DNA barcoding is highly efficient to reveal the presence of cryptic lineages within already-described taeniid species. Indeed, we detected three well-defined molecular lineages within the whole panel of specimens morphologically identified as T. taeniaeformis. Two of these molecular groups were already identified by other authors and should be ranked at species level. The third molecular group encompasses only samples collected in Italy during this study, and it represents a third candidate species, still morphologically undescribed.
Assuntos
Código de Barras de DNA Taxonômico/métodos , Taenia/classificação , Taenia/genética , Animais , Doenças do Gato/parasitologia , Gatos , Ciclo-Oxigenase 1/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Itália , Dados de Sequência Molecular , Análise de Sequência de DNA , Taenia/isolamento & purificação , Teníase/parasitologia , Teníase/veterináriaRESUMO
Methods recently developed to infer population structure and admixture mostly use individual genotypes described by unlinked neutral markers. However, Hardy-Weinberg and linkage disequilibria among independent markers decline rapidly with admixture time, and the admixture signals could be lost in a few generations. In this study, we aimed to describe genetic admixture in 182 European wild and domestic cats (Felis silvestris), which hybridize sporadically in Italy and extensively in Hungary. Cats were genotyped at 27 microsatellites, including 21 linked loci mapping on five distinct feline linkage groups. Genotypes were analysed with structure 2.1, a Bayesian procedure designed to model admixture linkage disequilibrium, which promises to assess efficiently older admixture events using tightly linked markers. Results showed that domestic and wild cats sampled in Italy were split into two distinct clusters with average proportions of membership Q > 0.90, congruent with prior morphological identifications. In contrast, free-living cats sampled in Hungary were assigned partly to the domestic and the wild cat clusters, with Q < 0.50. Admixture analyses of individual genotypes identified, respectively, 5/61 (8%), and 16-20/65 (25-31%) hybrids among the Italian wildcats and Hungarian free-living cats. Similar results were obtained in the past using unlinked loci, although the new linked markers identified additional admixed wildcats in Italy. Linkage analyses confirm that hybridization is limited in Italian, but widespread in Hungarian wildcats, a population that is threatened by cross-breeding with free-ranging domestic cats. The total panel of 27 loci performed better than the linked loci alone in the identification of domestic and known hybrid cats, suggesting that a large number of linked plus unlinked markers can improve the results of admixture analyses. Inferred recombination events led to identify the population of origin of chromosomal segments, suggesting that admixture mapping experiments can be designed also in wild populations.
Assuntos
Animais Selvagens/genética , Gatos/genética , Variação Genética , Genética Populacional , Hibridização Genética , Animais , Teorema de Bayes , Frequência do Gene , Hungria , Itália , Repetições de Microssatélites/genética , Recombinação Genética/genéticaRESUMO
Crossbreeding with free-ranging domestic cats is supposed to threaten the genetic integrity of wildcat populations in Europe, although the diagnostic markers to identify "pure" or "admixed" wildcats have never been clearly defined. Here we use mitochondrial (mt) DNA sequences and allelic variation at 12 microsatellite loci to genotype 128 wild and domestic cats sampled in Italy which were preclassified into three separate groups: European wildcats (Felis silvestris silvestris), Sardinian wildcats (Felis silvestris libyca), and domestic cats (Felis silvestris catus), according to their coat color patterns, collection localities, and other phenotypical traits, independently of any genetic information. For comparison, we included some captive-reared hybrids of European wild and domestic cats. Genetic variability was significantly partitioned among the three groups (mtDNA estimate of F(ST) = 0.36; microsatellite estimate of R(ST) = 0.30; P < 0.001), suggesting that morphological diversity reflects the existence of distinct gene pools. Multivariate ordination of individual genotypes and clustering of interindividual genetic distances also showed evidence of distinct cat groups, partially congruent with the morphological classification. Cluster analysis, however, did not enable hybrid cats to be identified from genetic information alone, nor were all individuals assigned to their populations. In contrast, a Bayesian admixture analysis simultaneously assigned the European wildcats, the Sardinian wildcats, and the domestic cats to different clusters, independent of any prior information, and pointed out the admixed gene composition of the hybrids, which were assigned to more than one cluster. Only one putative Sardinian wildcat was assigned to the domestic cat cluster, and one presumed European wildcat showed mixed (hybrid) ancestry in the domestic cat gene pool. Mitochondrial DNA sequences indicated that three additional presumed European wildcats might have hybrid ancestry. These four cats were sampled from the same area in the northernmost edge of the European wildcat distribution in the Italian Apennines. Admixture analyses suggest that wild and domestic cats in Italy are distinct, reproductively isolated gene pools and that introgression of domestic alleles into the wild-living population is very limited and geographically localized.
Assuntos
Teorema de Bayes , DNA Mitocondrial/genética , Alelos , Animais , Gatos , Análise por Conglomerados , DNA/química , DNA/genética , DNA Mitocondrial/química , Frequência do Gene , Variação Genética , Genótipo , Haplótipos , Hibridização Genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNARESUMO
The genetic integrity and evolutionary persistence of declining wildcat populations are threatened by crossbreeding with widespread free-living domestic cats. Here we use allelic variation at 12 microsatellite loci to describe genetic variation in 336 cats sampled from nine European countries. Cats were identified as European wildcats (Felis silvestris silvestris), Sardinian wildcats (F. s. libyca) and domestic cats (F. s. catus), according to phenotypic traits, geographical locations and independently of any genetic information. Genetic variability was significantly partitioned among taxonomic groups (FST = 0.11; RST = 0.41; P < 0.001) and sampling locations (FST = 0.07; RST = 0.06; P < 0.001), suggesting that wild and domestic cats are subdivided into distinct gene pools in Europe. Multivariate and Bayesian clustering of individual genotypes also showed evidence of distinct cat groups, congruent with current taxonomy, and suggesting geographical population structuring. Admixture analyses identified cryptic hybrids among wildcats in Portugal, Italy and Bulgaria, and evidenced instances of extensive hybridization between wild and domestic cats sampled in Hungary. Cats in Hungary include a composite assemblage of variable phenotypes and genotypes, which, as previously documented in Scotland, might originate from long lasting hybridization and introgression. A number of historical, demographic and ecological conditions can lead to extensive crossbreeding between wild and domestic cats, thus threatening the genetic integrity of wildcat populations in Europe.