Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(8): 2775-2790, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456468

RESUMO

Inherited glycosylphosphatidylinositol deficiency disorders (IGDs) are a group of rare multisystem disorders arising from pathogenic variants in glycosylphosphatidylinositol anchor pathway (GPI-AP) genes. Despite associating 24 of at least 31 GPI-AP genes with human neurogenetic disease, prior reports are limited to single genes without consideration of the GPI-AP as a whole and with limited natural history data. In this multinational retrospective observational study, we systematically analyse the molecular spectrum, phenotypic characteristics and natural history of 83 individuals from 75 unique families with IGDs, including 70 newly reported individuals; the largest single cohort to date. Core clinical features were developmental delay or intellectual disability (DD/ID, 90%), seizures (83%), hypotonia (72%) and motor symptoms (64%). Prognostic and biologically significant neuroimaging features included cerebral atrophy (75%), cerebellar atrophy (60%), callosal anomalies (57%) and symmetric restricted diffusion of the central tegmental tracts (60%). Sixty-one individuals had multisystem involvement including gastrointestinal (66%), cardiac (19%) and renal (14%) anomalies. Though dysmorphic features were appreciated in 82%, no single dysmorphic feature had a prevalence >30%, indicating substantial phenotypic heterogeneity. Follow-up data were available for all individuals, 15 of whom were deceased at the time of writing. Median age at seizure onset was 6 months. Individuals with variants in synthesis stage genes of the GPI-AP exhibited a significantly shorter time to seizure onset than individuals with variants in transamidase and remodelling stage genes of the GPI-AP (P = 0.046). Forty individuals had intractable epilepsy. The majority of individuals experienced delayed or absent speech (95%), motor delay with non-ambulance (64%), and severe-to-profound DD/ID (59%). Individuals with a developmental epileptic encephalopathy (51%) were at greater risk of intractable epilepsy (P = 0.003), non-ambulance (P = 0.035), ongoing enteral feeds (P < 0.001) and cortical visual impairment (P = 0.007). Serial neuroimaging showed progressive cerebral volume loss in 87.5% and progressive cerebellar atrophy in 70.8%, indicating a neurodegenerative process. Genetic analyses identified 93 unique variants (106 total), including 22 novel variants. Exploratory analyses of genotype-phenotype correlations using unsupervised hierarchical clustering identified novel genotypic predictors of clinical phenotype and long-term outcome with meaningful implications for management. In summary, we expand both the mild and severe phenotypic extremities of the IGDs, provide insights into their neurological basis, and vitally, enable meaningful genetic counselling for affected individuals and their families.


Assuntos
Glicosilfosfatidilinositóis , Humanos , Masculino , Feminino , Pré-Escolar , Criança , Adolescente , Estudos Retrospectivos , Lactente , Adulto , Glicosilfosfatidilinositóis/deficiência , Glicosilfosfatidilinositóis/genética , Deficiência Intelectual/genética , Deficiências do Desenvolvimento/genética , Adulto Jovem , Defeitos Congênitos da Glicosilação/genética , Fenótipo , Convulsões/genética
2.
Clin Genet ; 105(6): 620-629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356149

RESUMO

PPP1R21 encodes for a conserved protein that is involved in endosomal maturation. Biallelic pathogenic variants in PPP1R21 have been associated with a syndromic neurodevelopmental disorder from studying 13 affected individuals. In this report, we present 11 additional individuals from nine unrelated families and their clinical, radiological, and molecular findings. We identified eight different variants in PPP1R21, of which six were novel variants. Global developmental delay and hypotonia are neurological features that were observed in all individuals. There is also a similar pattern of dysmorphic features with coarse faces as a gestalt observed in several individuals. Common findings in 75% of individuals with available brain imaging include delays in myelination, wavy outline of the bodies of the lateral ventricles, and slight prominence of the bodies of the lateral ventricles. PPP1R21-related neurodevelopmental disorder is associated with a consistent phenotype and should be considered in highly consanguineous individuals presenting with developmental delay/intellectual disability along with coarse facial features.


Assuntos
Transtornos do Neurodesenvolvimento , Fenótipo , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Linhagem
3.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026777

RESUMO

One third of women in the United States are affected by obesity during pregnancy. Maternal obesity (MO) is associated with an increased risk of neurodevelopmental and metabolic disorders in the offspring. The placenta, located at the maternal-fetal interface, is a key organ determining fetal development and likely contributes to programming of long-term offspring health. We profiled the term placental transcriptome in humans (pre-pregnancy BMI 35+ [MO condition] or 18.5-25 [lean condition]) using single-nucleus RNA-seq to compare expression profiles in MO versus lean conditions, and to reveal potential mechanisms underlying offspring disease risk. We recovered 62,864 nuclei of high quality from 10 samples each from the maternal-facing and fetal-facing sides of the placenta. On both sides in several cell types, MO was associated with upregulation of hypoxia response genes. On the maternal-facing side only, hypoxia gene expression was associated with offspring neurodevelopmental measures, in Gen3G, an independent pregnancy cohort with bulk placental tissue RNA-seq. We leveraged Gen3G to determine genes that correlated with impaired neurodevelopment and found these genes to be most highly expressed in extravillous trophoblasts (EVTs). EVTs further showed the strongest correlation between neurodevelopment impairment gene scores (NDIGSs) and the hypoxia gene score. We reanalyzed gene expression of cultured EVTs, and found increased NDIGSs associated with exposure to hypoxia. Among EVTs, accounting for the hypoxia gene score attenuated 44% of the association between BMI and NDIGSs. These data suggest that hypoxia in EVTs may be a key process in the neurodevelopmental programming of fetal exposure to MO.

4.
medRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746364

RESUMO

Retinoblastoma (RB) proteins are highly conserved transcriptional regulators that play important roles during development by regulating cell-cycle gene expression. RBL2 dysfunction has been linked to a severe neurodevelopmental disorder. However, to date, clinical features have only been described in six individuals carrying five biallelic predicted loss of function (pLOF) variants. To define the phenotypic effects of RBL2 mutations in detail, we identified and clinically characterized a cohort of 28 patients from 18 families carrying LOF variants in RBL2 , including fourteen new variants that substantially broaden the molecular spectrum. The clinical presentation of affected individuals is characterized by a range of neurological and developmental abnormalities. Global developmental delay and intellectual disability were uniformly observed, ranging from moderate to profound and involving lack of acquisition of key motor and speech milestones in most patients. Frequent features included postnatal microcephaly, infantile hypotonia, aggressive behaviour, stereotypic movements and non-specific dysmorphic features. Common neuroimaging features were cerebral atrophy, white matter volume loss, corpus callosum hypoplasia and cerebellar atrophy. In parallel, we used the fruit fly, Drosophila melanogaster , to investigate how disruption of the conserved RBL2 orthologueue Rbf impacts nervous system function and development. We found that Drosophila Rbf LOF mutants recapitulate several features of patients harboring RBL2 variants, including alterations in the head and brain morphology reminiscent of microcephaly, and perturbed locomotor behaviour. Surprisingly, in addition to its known role in controlling tissue growth during development, we find that continued Rbf expression is also required in fully differentiated post-mitotic neurons for normal locomotion in Drosophila , and that adult-stage neuronal re-expression of Rbf is sufficient to rescue Rbf mutant locomotor defects. Taken together, this study provides a clinical and experimental basis to understand genotype-phenotype correlations in an RBL2 -linked neurodevelopmental disorder and suggests that restoring RBL2 expression through gene therapy approaches may ameliorate aspects of RBL2 LOF patient symptoms.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa