Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Toxicol ; 29(7): 788-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-22887814

RESUMO

The presence of cholinesterase (ChE) activity in skin mucus of three carps, Cirrhinus mrigala, Labeo rohita, and Catla catla and its applicability as biomarker of the organophosphorus insecticide exposure were investigated. Biochemical characterization, using specific substrates and inhibitors, indicated that measured esterase activity in skin mucus was mainly owing to ChEs. Significant difference in the proportion of acetylcholinesterase and butyrylcholinesterase activities was observed in skin mucus of three carps. Enzyme kinetic analysis, using the substrate acetylthiocholine iodide revealed significantly high Vmax value in C. catla compared to that in L. rohita and C. mrigala. In contrast, Vmax value using the substrate butyrylthiocholine iodide was significantly high in C. mrigala than in L. rohita and C. catla. In vitro treatment of skin mucus of three carps, with the organophosphorus insecticide Nuvan®, showed strong inhibition of ChE activities. In vivo experiments conducted using C. mrigala and exposing the fish to the sublethal test concentrations (5 and 15 mg/L) of the insecticide also revealed significant inhibition of ChE activity in mucus. In C. mrigala, exposed to the sublethal test concentrations of the insecticide for 4 days and then kept for recovery for 16 days, mucus ChE activity recovered to the control level. Thus, ChE activity in skin mucus could be considered a good biomarker of the organophosphorus insecticide exposure to fish and a useful tool in monitoring environmental toxicity.


Assuntos
Carpas/metabolismo , Colinesterases/metabolismo , Cyprinidae/metabolismo , Inseticidas/toxicidade , Muco/enzimologia , Organofosfatos/toxicidade , Pele/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/análise , Acetilcolinesterase/metabolismo , Animais , Biomarcadores/análise , Colinesterases/análise , Diclorvós/toxicidade , Monitoramento Ambiental , Cinética , Pele/enzimologia
2.
Acta Histochem ; 114(6): 626-35, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22177215

RESUMO

Glycoproteins were analyzed by a range of histochemical methods in the epithelium of gills of Cirrhinus mrigala, a valuable food fish of great economic importance cultured extensively in India. The gills consist of gill arches, gill rakers, gill filaments and secondary lamellae. Major components of the epithelium of gill arches and gill rakers are epithelial cells, mucous goblet cells, rodlet cells, lymphocytes, eosinophilic granular cells and taste buds. In contrast, in the gill filament epithelium, rodlet cells and taste buds, and in secondary lamellae epithelium, rodlet cells, lymphocytes, eosinophilic granular cells and taste buds are not discernible. The epithelial cells, the mucous goblet cells and the eosinophilic granular cells elaborate glycoproteins with oxidizable vicinal diols and glycoproteins with sialic acid residues without O-acyl substitution. In addition, glycoproteins with O-sulphate esters are secreted by the mucous goblet cells. The rodlet cells elaborate glycoproteins with oxidizable vicinal diols. Different types of glycoproteins elaborated on the epithelial surface of gills are discussed in relation to physiological significance of glycoprotein classes with special reference to their roles in lubrication, protection and inhibition of invasion and proliferation of pathogenic micro-organisms.


Assuntos
Células Epiteliais/metabolismo , Brânquias/metabolismo , Glicoproteínas/análise , Histocitoquímica , Animais , Carpas , Brânquias/citologia , Glicoproteínas/metabolismo , Índia
3.
Microsc Res Tech ; 75(7): 890-7, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22279026

RESUMO

In this study, healing of cutaneous wounds in Labeo rohita using scanning electron microscope is reported. Wound area could be divided into three regions. Immediately after infliction of wound, edges retract exposing underlying tissues in wound gap (Region I). Simultaneously, at region close to wound edge (Region II), mucous goblet cell openings are observed with copious mucous secretions. Within 1 h, Region I gets covered by mucous secretions, and epidermis at edges starts migrating. Opposing fronts gradually advance and by 4-6 h come in contact to epithelialize wound gap. Zone of contact of fronts is demarcated by epidermal ridge, which is relatively prominent at 8 h. It gradually diminishes and is not distinguished at 24 h and afterward. At 1-4 h, microridges on epithelial cell surfaces appear irregularly arranged, widely spaced, short with abrupt ends at Region I; relatively extensive at Region II; and similar to those in controls at region surrounding Region II (Region III). At 12 h and afterward, microridges appear similar to those in controls at Regions I and II. At 1-2 h, isolated swollen epithelial cells, often in process of detachment and exfoliation at surface, are observed at Regions I and II. Such cells are infrequent at 8 h and afterward. Region I covered by migrated epidermis appears trough like at 4 h to 2 days, level of which gradually rises and at Day 4, surface of epidermis appears at a level similar to that at Regions II and III. Changes have been associated with the imbalance of osmotic homeostasis due to disruption of barrier between internal and external environment of skin.


Assuntos
Cyprinidae/lesões , Cyprinidae/fisiologia , Pele/lesões , Cicatrização , Ferimentos e Lesões/fisiopatologia , Animais , Microscopia Eletrônica de Varredura , Pele/ultraestrutura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa