Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 494, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215181

RESUMO

BACKGROUND: Gmelina arborea Roxb is a fast-growing tree species of commercial importance for tropical countries due to multiple industrial uses of its wood. Wood is primarily composed of thick secondary cell walls of xylem cells which imparts the strength to the wood. Identification of the genes involved in the secondary cell wall biosynthesis as well as their cognate regulators is crucial to understand how the production of wood occurs and serves as a starting point for developing breeding strategies to produce varieties with improved wood quality, better paper pulping or new potential uses such as biofuel production. In order to gain knowledge on the molecular mechanisms and gene regulation related with wood development in white teak, a de novo sequencing and transcriptome assembly approach was used employing secondary cell wall synthesizing cells from young white teak trees. RESULTS: For generation of transcriptome, RNA-seq reads were assembled into 110,992 transcripts and 49,364 genes were functionally annotated using plant databases; 5071 GO terms and 25,460 SSR markers were identified within xylem transcripts and 10,256 unigenes were assigned to KEGG database in 130 pathways. Among transcription factor families, C2H2, C3H, bLHLH and MYB were the most represented in xylem. Differential gene expression analysis using leaves as a reference was carried out and a total of 20,954 differentially expressed genes were identified including monolignol biosynthetic pathway genes. The differential expression of selected genes (4CL, COMT, CCoAOMT, CCR and NST1) was validated using qPCR. CONCLUSIONS: We report the very first de novo transcriptome of xylem-related genes in this tropical timber species of commercial importance and constitutes a valuable extension of the publicly available transcriptomic resource aimed at fostering both basic and breeding studies.


Assuntos
Regulação da Expressão Gênica de Plantas , Madeira , Perfilação da Expressão Gênica , Melhoramento Vegetal , Metabolismo Secundário , Transcriptoma , Xilema
2.
BMC Plant Biol ; 19(1): 378, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455245

RESUMO

BACKGROUND: Male sterility has tremendous scientific and economic importance in hybrid seed production. Identification and characterization of a stable male sterility gene will be highly beneficial for making hybrid seed production economically feasible. In soybean, eleven male-sterile, female-fertile mutant lines (ms1, ms2, ms3, ms4, ms5, ms6, ms7, ms8, ms9, msMOS, and msp) have been identified and mapped onto various soybean chromosomes, however the causal genes responsible for male sterility are not isolated. The objective of this study was to identify and functionally characterize the gene responsible for the male sterility in the ms4 mutant. RESULTS: The ms4 locus was fine mapped to a 216 kb region, which contains 23 protein-coding genes including Glyma.02G243200, an ortholog of Arabidopsis MALE MEIOCYTE DEATH 1 (MMD1), which is a Plant Homeodomain (PHD) protein involved in male fertility. Isolation and sequencing of Glyma.02G243200 from the ms4 mutant line showed a single base insertion in the 3rd exon causing a premature stop codon resulting in truncated protein production. Phylogenetic analysis showed presence of a homolog protein (MS4_homolog) encoded by the Glyma.14G212300 gene. Both proteins were clustered within legume-specific clade of the phylogenetic tree and were likely the result of segmental duplication during the paleoploidization events in soybean. The comparative expression analysis of Ms4 and Ms4_homologs across the soybean developmental and reproductive stages showed significantly higher expression of Ms4 in early flowering (flower bud differentiation) stage than its homolog. The functional complementation of Arabidopsis mmd1 mutant with the soybean Ms4 gene produced normal stamens, successful tetrad formation, fertile pollens and viable seeds, whereas the Ms4_homolog was not able to restore male fertility. CONCLUSIONS: Overall, this is the first report, where map based cloning approach was employed to isolate and characterize a gene responsible for the male-sterile phenotype in soybean. Characterization of male sterility genes may facilitate the establishment of a stable male sterility system, highly desired for the viability of hybrid seed production in soybean. Additionally, translational genomics and genome editing technologies can be utilized to generate new male-sterile lines in other plant species.


Assuntos
Glycine max/fisiologia , Proteínas de Homeodomínio/genética , Mutação , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/metabolismo , Reprodução , Glycine max/genética
3.
BMC Plant Biol ; 18(1): 185, 2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30189845

RESUMO

BACKGROUND: As one of the largest subfamilies of the receptor-like protein kinases (RLKs) in plants, Leucine Rich Repeats-RLKs (LRR-RLKs) are involved in many critical biological processes including growth, development and stress responses in addition to various physiological roles. Arabidopsis contains 234 LRR-RLKs, and four members of Stress Induced Factor (SIF) subfamily (AtSIF1-AtSIF4) which are involved in abiotic and biotic stress responses. Herein, we aimed at identification and functional characterization of SIF subfamily in cultivated tetraploid cotton Gossypium hirsutum. RESULTS: Genome-wide analysis of cotton LRR-RLK gene family identified 543 members and phylogenetic analysis led to the identification of 6 cotton LRR-RLKs with high homology to Arabidopsis SIFs. Of the six SIF homologs, GhSIF1 is highly conserved exhibiting 46-47% of homology with AtSIF subfamily in amino acid sequence. The GhSIF1 was transiently silenced using Virus-Induced Gene Silencing system specifically targeting the 3' Untranslated Region. The transiently silenced cotton seedlings showed enhanced salt tolerance compared to the control plants. Further, the transiently silenced plants showed better growth, lower electrolyte leakage, and higher chlorophyll and biomass contents. CONCLUSIONS: Overall, 543 LRR-RLK genes were identified using genome-wide analysis in cultivated tetraploid cotton G. hirsutum. The present investigation also demonstrated the conserved salt tolerance function of SIF family member in cotton. The GhSIF1 gene can be knocked out using genome editing technologies to improve salt tolerance in cotton.


Assuntos
Gossypium/enzimologia , Proteínas de Plantas/genética , Proteínas Quinases/genética , Adaptação Fisiológica/genética , Arabidopsis/genética , Evolução Molecular , Éxons , Ontologia Genética , Inativação Gênica , Genes de Plantas , Gossypium/classificação , Gossypium/genética , Íntrons , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transcriptoma
4.
BMC Plant Biol ; 15: 187, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26232118

RESUMO

BACKGROUND: The plant cell wall serves as a primary barrier against pathogen invasion. The success of a plant pathogen largely depends on its ability to overcome this barrier. During the infection process, plant parasitic nematodes secrete cell wall degrading enzymes (CWDEs) apart from piercing with their stylet, a sharp and hard mouthpart used for successful infection. CWDEs typically consist of cellulases, hemicellulases, and pectinases, which help the nematode to infect and establish the feeding structure or form a cyst. The study of nematode cell wall degrading enzymes not only enhance our understanding of the interaction between nematodes and their host, but also provides information on a novel source of enzymes for their potential use in biomass based biofuel/bioproduct industries. Although there is comprehensive information available on genome wide analysis of CWDEs for bacteria, fungi, termites and plants, but no comprehensive information available for plant pathogenic nematodes. Herein we have performed a genome wide analysis of CWDEs from the genome sequenced phyto pathogenic nematode species and developed a comprehensive publicly available database. RESULTS: In the present study, we have performed a genome wide analysis for the presence of CWDEs from five plant parasitic nematode species with fully sequenced genomes covering three genera viz. Bursaphelenchus, Glorodera and Meloidogyne. Using the Hidden Markov Models (HMM) conserved domain profiles of the respective gene families, we have identified 530 genes encoding CWDEs that are distributed among 24 gene families of glycoside hydrolases (412) and polysaccharide lyases (118). Furthermore, expression profiles of these genes were analyzed across the life cycle of a potato cyst nematode. Most genes were found to have moderate to high expression from early to late infectious stages, while some clusters were invasion stage specific, indicating the role of these enzymes in the nematode's infection and establishment process. Additionally, we have also developed a Nematode's Plant Cell Wall Degrading Enzyme (NCWDE) database as a platform to provide a comprehensive outcome of the present study. CONCLUSIONS: Our study provides collective information about different families of CWDEs from five different sequenced plant pathogenic nematode species. The outcomes of this study will help in developing better strategies to curtail the nematode infection, as well as help in identification of novel cell wall degrading enzymes for biofuel/bioproduct industries.


Assuntos
Parede Celular/fisiologia , Estudo de Associação Genômica Ampla , Proteínas de Helminto/genética , Células Vegetais/fisiologia , Tylenchida/genética , Animais , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Proteínas de Helminto/metabolismo , Polissacarídeo-Liases/genética , Polissacarídeo-Liases/metabolismo , Tylenchida/enzimologia
5.
Plant Biotechnol J ; 11(8): 953-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23782852

RESUMO

The sequence information has been proved to be an essential genomic resource in case of crop plants for their genetic improvement and better utilization by humans. To dissect the Gossypium hirsutum genome for large-scale development of genomic resources, we adopted hypomethylated restriction-based genomic enrichment strategy to sequence six diverse genotypes. Approximately 5.2-Gb data (more than 18.36 million reads) was generated which, after assembly, represents nearly 1.27-Gb genomic sequences. We predicted a total of 93,363 gene models (21,399 full length) and identified 35,923 gene models which were validated against already sequenced plant genomes. A total of 1,093 transcription factor-encoding genes, 3,135 promoter sequences and 78 miRNA (including 17 newly identified in Gossypium) were predicted. We identified significant no. of molecular markers including 47,093 novel simple sequence repeats and 66,364 novel single nucleotide polymorphisms. In addition, we developed NBRI-Comprehensive Cotton Genomics database, a web resource to provide access of cotton-related genomic resources developed at NBRI. This study contributes considerable amount of genomic resources and suggests a potential role of genic-enriched sequencing in genomic resource development for orphan crop plants.


Assuntos
Bases de Dados Genéticas , Biblioteca Gênica , Gossypium/genética , DNA de Plantas/química , Marcadores Genéticos , Genótipo , Repetições de Microssatélites , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
6.
BMC Genomics ; 13: 94, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22424186

RESUMO

BACKGROUND: Genome-wide gene expression profiling and detailed physiological investigation were used for understanding the molecular mechanism and physiological response of Gossypium herbaceum, which governs the adaptability of plants in drought conditions. Recently, microarray-based gene expression analysis is commonly used to decipher genes and genetic networks controlling the traits of interest. However, the results of such an analysis are often plagued due to a limited number of genes (probe sets) on microarrays. On the other hand, pyrosequencing of a transcriptome has the potential to detect rare as well as a large number of transcripts in the samples quantitatively. We used Affymetrix microarray as well as Roche's GS-FLX transcriptome sequencing for a comparative analysis of cotton transcriptome in leaf tissues under drought conditions. RESULTS: Fourteen accessions of Gossypium herbaceum were subjected to mannitol stress for preliminary screening; two accessions, namely Vagad and RAHS-14, were selected as being the most tolerant and most sensitive to osmotic stress, respectively. Affymetrix cotton arrays containing 24,045 probe sets and Roche's GS-FLX transcriptome sequencing of leaf tissue were used to analyze the gene expression profiling of Vagad and RAHS-14 under drought conditions. The analysis of physiological measurements and gene expression profiling showed that Vagad has the inherent ability to sense drought at a much earlier stage and to respond to it in a much more efficient manner than does RAHS-14. Gene Ontology (GO) studies showed that the phenyl propanoid pathway, pigment biosynthesis, polyketide biosynthesis, and other secondary metabolite pathways were enriched in Vagad under control and drought conditions as compared with RAHS-14. Similarly, GO analysis of transcriptome sequencing showed that the GO terms responses to various abiotic stresses were significantly higher in Vagad. Among the classes of transcription factors (TFs) uniquely expressed in both accessions, RAHS-14 showed the expression of ERF and WRKY families. The unique expression of ERFs in response to drought conditions reveals that RAHS-14 responds to drought by inducing senescence. This was further supported by transcriptome analysis which revealed that RAHS-14 responds to drought by inducing many transcripts related to senescence and cell death. CONCLUSION: The comparative genome-wide gene expression profiling study of two accessions of G.herbaceum under drought stress deciphers the differential patterns of gene expression, including TFs and physiologically relevant processes. Our results indicate that drought tolerance observed in Vagad is not because of a single molecular reason but is rather due to several unique mechanisms which Vagad has developed as an adaptation strategy.


Assuntos
Adaptação Fisiológica/genética , Secas , Perfilação da Expressão Gênica , Gossypium/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica de Plantas , Gossypium/metabolismo , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Estresse Fisiológico , Fatores de Transcrição/genética
7.
Theor Appl Genet ; 124(3): 565-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22038488

RESUMO

Four microsatellite-enriched genomic libraries for CA(15), GA(15), AAG(8) and ATG(8) repeats and transcriptome sequences of five cDNA libraries of Gossypium herbaceum were explored to develop simple sequence repeat (SSR) markers. A total of 428 unique clones from repeat enriched genomic libraries were mined for 584 genomic SSRs (gSSRs). In addition, 99,780 unigenes from transcriptome sequencing were explored for 8,900 SSR containing sequences with 12,471 expressed SSRs. The present study adds 1,970 expressed SSRs and 263 gSSRs to the public domain for the use of genetic studies of cotton. When 150 gSSRs and 50 expressed SSRs were tested on a panel of four species of cotton, 68 gSSRs and 12 expressed SSRs revealed polymorphism. These 200 SSRs were further deployed on 15 genotypes of levant cotton for the genetic diversity assessment. This is the first report on the successful use of repeat enriched genomic library and expressed sequence database for microsatellite markers development in G. herbaceum.


Assuntos
Gossypium/genética , Repetições de Microssatélites/genética , Polimorfismo Genético , Sequência de Bases , Análise por Conglomerados , Biologia Computacional , Mineração de Dados , Biblioteca Gênica , Genômica/métodos , Dados de Sequência Molecular , Fenótipo , Análise de Sequência de DNA
8.
Life (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947844

RESUMO

Breeding efforts have helped in increasing crop yields globally [...].

9.
Life (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34575104

RESUMO

Susceptible and resistant germplasm respond differently to pathogenic attack, including virus infections. We compared the transcriptome changes between a resistant wheat cultivar, Sonalika, and a susceptible cultivar, WL711, to understand this process in wheat against wheat dwarf India virus (WDIV) infection. A total of 2760 and 1853 genes were differentially expressed in virus-infected and mock-inoculated Sonalika, respectively, compared to WL711. The overrepresentation of genes involved in signaling, hormone metabolism, enzymes, secondary metabolites, proteolysis, and transcription factors was documented, including the overexpression of multiple PR proteins. We hypothesize that the virus resistance in Sonalika is likely due to strong intracellular surveillance via the action of multiple PR proteins (PR1, RAR1, and RPM1) and ChiB. Other genes such as PIP1, LIP1, DnaJ, defensins, oxalate oxidase, ankyrin repeat protein, serine-threonine kinase, SR proteins, beta-1,3-glucanases, and O-methyltransferases had a significant differential expression and play roles in stress tolerance, may also be contributing towards the virus resistance in Sonalika. In addition, we identified putative genes with unknown functions, which are only expressed in response to WDIV infection in Sonalika. The role of these genes could be further validated and utilized in engineering resistance in wheat and other crops.

10.
Front Genome Ed ; 3: 760820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35098208

RESUMO

Delivery of genome editing reagents using CRISPR-Cas ribonucleoproteins (RNPs) transfection offers several advantages over plasmid DNA-based delivery methods, including reduced off-target editing effects, mitigation of random integration of non-native DNA fragments, independence of vector constructions, and less regulatory restrictions. Compared to the use in animal systems, RNP-mediated genome editing is still at the early development stage in plants. In this study, we established an efficient and simplified protoplast-based genome editing platform for CRISPR-Cas RNP delivery, and then evaluated the efficiency, specificity, and temperature sensitivity of six Cas9 and Cas12a proteins. Our results demonstrated that Cas9 and Cas12a RNP delivery resulted in genome editing frequencies (8.7-41.2%) at various temperature conditions, 22°C, 26°C, and 37°C, with no significant temperature sensitivity. LbCas12a often exhibited the highest activities, while AsCas12a demonstrated higher sequence specificity. The high activities of CRISPR-Cas RNPs at 22° and 26°C, the temperature preferred by plant transformation and tissue culture, led to high mutagenesis efficiencies (34.0-85.2%) in the protoplast-regenerated calli and plants with the heritable mutants recovered in the next generation. This RNP delivery approach was further extended to pennycress (Thlaspi arvense), soybean (Glycine max) and Setaria viridis with up to 70.2% mutagenesis frequency. Together, this study sheds light on the choice of RNP reagents to achieve efficient transgene-free genome editing in plants.

11.
Plants (Basel) ; 9(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781507

RESUMO

The nonexpressor of pathogenesis-related 1 (NPR1) family plays diverse roles in gene regulation in the defense and development signaling pathways in plants. Less evidence is available regarding the significance of the NPR1-like gene family in cotton (Gossypium species). Therefore, to address the importance of the cotton NPR1-like gene family in the defense pathway, four Gossypium species were studied: two tetraploid species, G.hirsutum and G. barbadense, and their two potential ancestral diploids, G. raimondii and G. arboreum. In this study, 12 NPR1-like family genes in G. hirsutum were recognized, including six genes in the A-subgenome and six genes in the D-subgenome. Based on the phylogenetic analysis, gene and protein structural features, cotton NPR-like proteins were grouped into three different clades. Our analysis suggests the significance of cis-regulatory elements in the upstream region of cotton NPR1-like genes in hormonal signaling, biotic stress conditions, and developmental processes. The quantitative expression analysis for different developmental tissues and fiber stages (0 to 25 days post-anthesis), as well as salicylic acid induction, confirmed the distinct function of different cotton NPR genes in defense and fiber development. Altogether, this study presents specifications of conservation in the cotton NPR1-like gene family and their functional divergence for development of fiber and defense properties.

12.
Plant Signal Behav ; 15(5): 1747689, 2020 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-32290756

RESUMO

Identifying the maximum level of inherent defense against harmful insects in natural variation among wild lineages of crop plants may result in high yield tolerant varieties and reducing use of chemical insecticides. However, knowledge of natural cotton genotypes with high insect-resistance is still indistinguishable at the biochemical or molecular level. In the present study, different cultivated Gossypium hirsutum varieties were evaluated for their inherent insect-tolerance against two major cottons chewing pests. The insect bio-assay identified two tolerant and one susceptible cotton varieties. The study demonstrates difference in phenolic acids, proanthocyanidin and tannin accumulation in tolerant and susceptible varieties. The post-infestation of chewing pests increases transcript level of the phenylpropanoid pathway genes were detected in tolerant varieties as compared to the susceptible varieties. Altogether, chewing pest-tolerance level in cotton varieties is the cumulative effect of enhanced phenylpropanoid pathway genes expression and secondary metabolite leading to defense responses to conventional host plant.


Assuntos
Gossypium/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Animais , Genótipo , Gossypium/genética , Hidroxibenzoatos/metabolismo , Mariposas/patogenicidade , Plantas Geneticamente Modificadas/genética , Proantocianidinas/metabolismo , Taninos/metabolismo
13.
Sci Rep ; 6: 34309, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27679939

RESUMO

The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality.

14.
PLoS One ; 10(8): e0134709, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26263547

RESUMO

The recruitment of RNA polymerase II on a promoter is assisted by the assembly of basal transcriptional machinery in eukaryotes. The Spt-Ada-Gcn5-Acetyltransferase (SAGA) complex plays an important role in transcription regulation in eukaryotes. However, even in the advent of genome sequencing of various plants, SAGA complex has been poorly defined for their components and roles in plant development and physiological functions. Computational analysis of Arabidopsis thaliana and Oryza sativa genomes for SAGA complex resulted in the identification of 17 to 18 potential candidates for SAGA subunits. We have further classified the SAGA complex based on the conserved domains. Phylogenetic analysis revealed that the SAGA complex proteins are evolutionary conserved between plants, yeast and mammals. Functional annotation showed that they participate not only in chromatin remodeling and gene regulation, but also in different biological processes, which could be indirect and possibly mediated via the regulation of gene expression. The in silico expression analysis of the SAGA components in Arabidopsis and O. sativa clearly indicates that its components have a distinct expression profile at different developmental stages. The co-expression analysis of the SAGA components suggests that many of these subunits co-express at different developmental stages, during hormonal interaction and in response to stress conditions. Quantitative real-time PCR analysis of SAGA component genes further confirmed their expression in different plant tissues and stresses. The expression of representative salt, heat and light inducible genes were affected in mutant lines of SAGA subunits in Arabidopsis. Altogether, the present study reveals expedient evidences of involvement of the SAGA complex in plant gene regulation and stress responses.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Transativadores/metabolismo , Evolução Biológica , Cromossomos de Plantas , Análise por Conglomerados , Sequência Conservada , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genoma de Planta , Estudo de Associação Genômica Ampla , Anotação de Sequência Molecular , Filogenia , Plantas/classificação , Plantas/genética , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Estresse Fisiológico/genética
15.
Sci Rep ; 5: 15350, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26481431

RESUMO

Bryophytes are the first land plants but are scarcely studied at the molecular level. Here, we report transcriptome sequencing and functional annotation of Dumortiera hirsuta, as a representative bryophyte. Approximately 0.5 million reads with ~195 Mb data were generated by sequencing of mRNA using 454 pyrosequencer. De novo assembly of reads yielded 85,240 unigenes (12,439 contigs and 72,801 singletons). BlastX search at NCBI-NR database showed similarity of 33,662 unigenes with 10-(10) e-value. A total of 23,685 unigenes were annotated at TAIR10 protein database. The annotated unigenes were further classified using the Gene Ontology. Analysis at Kyoto Encyclopedia of Genes and Genomes pathway database identified 95 pathways with significant scores, among which metabolic and biosynthesis of secondary metabolite were the major ones. Phenylpropanoid pathway was elucidated and selected genes were characterized by real time qPCR. We identified 447 transcription factors belonging to 41 families and 1594 eSSRs in 1479 unigenes. D. hirsuta unigenes showed homology across the taxa from algae to angiosperm indicating their role as the connecting link between aquatic and terrestrial plants. This could be a valuable genomic resource for molecular and evolutionary studies. Further, it sheds light for the isolation and characterization of new genes with unique functions.


Assuntos
Briófitas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Transcriptoma , Briófitas/metabolismo , Biologia Computacional/métodos , Bases de Dados Genéticas , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genoma de Planta , Repetições de Microssatélites , Anotação de Sequência Molecular , Estresse Fisiológico/genética , Fatores de Transcrição/genética
16.
Mol Plant ; 7(4): 626-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24177688

RESUMO

In the present study, we selected four distinct classes of light-regulated promoters. The light-regulated promoters can be distinctly grouped into either TATA-box-containing or TATA-less (initiator-containing) promoters. Further, using either native promoters or their swapped versions of core promoter elements, we established that TATA-box and Inr (Initiator) elements have distinct mechanisms which are involved in light-mediated regulation, and these elements are not swappable. We identified that mutations in either functional TATA-box or Inr elements lead to the formation of nucleosomal structure. The nucleotide diversity in either the TATA-box or Inr element in Arabidopsis ecotypes proposes that the nucleotide variation in core promoters can alter the gene expression. We show that motif overrepresentation in light-activated promoters encompasses different specific regulatory motifs present downstream of TSS (transcription start site), and this might serve as a key factor in regulating light promoters which are parallel with these elements. Finally, we conclude that the TATA-box or Inr element does not act in isolation, but our results clearly suggests the probable involvement of other distinct core promoter elements in concurrence with the TATA-box or Inr element to impart selectivity to light-mediated transcription.


Assuntos
Arabidopsis/genética , Luz , Regiões Promotoras Genéticas/genética , Nucleossomos/metabolismo , Transcrição Gênica
17.
Methods Mol Biol ; 833: 225-36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22183597

RESUMO

Histone proteins are the major protein components of chromatin - the physiologically relevant form of the genome (or epigenome) in all eukaryotic cells. For many years, histones were considered passive structural components of eukaryotic chromatin. In recent years, it has been demonstrated that dynamic association of histones and their variants to the genome plays a very important role in gene regulation. Histones are extensively modified during posttranslation viz. acetylation, methylation, phosphorylation, ubiquitylation, etc., and the identification of these covalent marks on canonical and variant histones is crucial for the understanding of their biological significance. Different biochemical techniques have been developed to purify and separate histone proteins; here, we describe techniques for analysis of histones from plant tissues.


Assuntos
Histonas/metabolismo , Biologia Molecular/métodos , Proteínas Mutantes/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Ácidos , Western Blotting , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Eletroforese em Gel de Poliacrilamida , Histonas/isolamento & purificação , Peso Molecular , Proteínas Mutantes/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Coloração pela Prata
18.
Methods Mol Biol ; 833: 201-23, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22183596

RESUMO

A vast body of evidence in the literature indicates that nucleosomes can act as barriers to transcriptional initiation. The nucleosome at the promoter inhibits association of transcription factors disallowing active transcription of the gene. We have found a nucleosome on tobacco pathogenesis-related gene-1a (PR-1a) core promoter and mapped its boundaries and extension to find its span. The nucleosome covers the TATA box and Inr region of the core promoter and gets disassembled upon induction. Prior to its removal, modifications (i.e., acetylation and methylation of histones) occur at the nucleosome, proving a role of epigenetic modifications in transcriptional regulation. We summarize here various methodologies to analyze promoter chromatin structure in plants using the PR-1a core promoter as an example.


Assuntos
Cromatina/química , Biologia Molecular/métodos , Células Vegetais/metabolismo , Anticorpos/imunologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Sequência de Bases , Imunoprecipitação da Cromatina , Primers do DNA/metabolismo , DNA de Plantas/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Histonas/metabolismo , Nuclease do Micrococo/metabolismo , Dados de Sequência Molecular , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase , Ligação Proteica , Processamento de Proteína Pós-Traducional , Fatores de Tempo
19.
Protein J ; 31(1): 68-74, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22134654

RESUMO

Fusion systems are known to increase the expression of difficult to express recombinant proteins in soluble form to facilitate their purification. Rabies glycoprotein was also tough to express at sufficient level in soluble form in both E. coli and plant. The present work was aimed to over-express and purify this membrane protein from soluble extract of E. coli. Fusion of Small Ubiqutin like Modifier (SUMO) with rabies glycoprotein increased ~1.5 fold higher expression and ~3.0 fold solubility in comparison to non-fused in E. coli. The SUMO fusion also simplified the purification process. Previously engineered rabies glycoprotein gene in tobacco plants provides complete protection to mice, but the expression was very low for purification. Our finding demonstrated that the SUMO-fusion was useful for enhancing expression and solubility of the membrane protein and again proves to be a good alternative technology for applications in biomedical and pharmaceutical research.


Assuntos
Escherichia coli/genética , Expressão Gênica , Vírus da Raiva/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas do Envelope Viral/genética , Animais , Escherichia coli/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Vírus da Raiva/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/isolamento & purificação , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas do Envelope Viral/isolamento & purificação , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa