Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Environ Res ; 225: 115612, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36871942

RESUMO

The World Health Organization (WHO) recognised variant B.1.1.529 of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a variant of concern, termed "Omicron", on November 26, 2021. Its diffusion was attributed to its several mutations, which allow promoting its ability to diffuse worldwide and its capability in immune evasion. As a consequence, some additional serious threats to public health posed the risk to undermine the global efforts made in the last two years to control the pandemic. In the past, several works were devoted to discussing a possible contribution of air pollution to the SARS-CoV-2 spread. However, to the best of the authors' knowledge, there are still no works dealing with the Omicron variant diffusion mechanisms. This work represents a snapshot of what we know right now, in the frame of an analysis of the Omicron variant spread. The paper proposes the use of a single indicator, commercial trade data, to model the virus spread. It is proposed as a surrogate of the interactions occurring between humans (the virus transmission mechanism due to human-to-human contacts) and could be considered for other diseases. It allows also to explain the unexpected increase in infection cases in China, detected at beginning of 2023. The air quality data are also analyzed to evaluate for the first time the role of air particulate matter (PM) as a carrier of the Omicron variant diffusion. Due to emerging concerns associated with other viruses (such as smallpox-like virus diffusion in Europe and America), the proposed approach seems to be promising to model the virus spreading.


Assuntos
Poluição do Ar , COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , China
2.
Environ Res ; 231(Pt 1): 115982, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37146934

RESUMO

Hexavalent chromium (Cr(VI)) is deemed a priority contaminant owing to its carcinogenicity, teratogenicity, and mutagenicity towards flora and fauna. A novel Chitosan-modified Mimosa pigra biochar (CMPBC) was fabricated and the efficiency of Cr(VI) oxyanion removal in aqueous systems was compared with the pristine biochar. The instrumental characterization of X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FT-IR) confirmed the amino modification of MPBC when treated with chitosan. Characteristic features of the Cr(VI) sorptive process by CMPBC and MPBC were examined by performing batch sorption studies. Experimental data suggested that sorption is heavily dependent on pH and the highest adsorption occurred at pH 3.0. The maximum adsorption capacity of CMPBC was 14.6 ± 1.07 mg g-1. It was further noted that the removal efficiency of CMPBC (92%) was considerably greater than that of MPBC (75%) when the solution pH, biochar dose, and initial concentration of Cr(VI) are 3.0, 1.0 g L-1 and 5.0 mg L-1 respectively. The kinetic data were best interpreted by the power function model (R2 = 0.97) suggesting a homogenous chemisorption process. The isotherm data for the removal of Cr(VI) by CMPBC was inferred well by Redlich Peterson (R2 = 0.96) and Temkin (R2 = 0.96) isotherms. Results of sorption-desorption regeneration cycles indicated that the Cr(VI) uptake by CMPBC is not fully reversible. The coexistence of Cr(VI) and Cr(III) on CMPBC was confirmed through the XPS analysis. The electrostatic attractions between cationic surface functionalities and Cr(VI) oxyanions, the partial reductive transformation of Cr(VI) species to Cr(III), as well as complexation of Cr(III) onto CMPBC were identified as the possible mechanisms of mitigation of Cr(VI) by CMPBC. The results and outcomes of this research suggest the possibility of utilizing the CMPBC as an easily available, environmentally sustainable, and inexpensive sorbent to decontaminate Cr(VI) from aqueous media.


Assuntos
Quitosana , Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Cromo/análise , Água , Cinética , Concentração de Íons de Hidrogênio
3.
Environ Res ; 216(Pt 2): 114496, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36257453

RESUMO

The emergence of novel respiratory disease (COVID-19) caused by SARS-CoV-2 has become a public health emergency worldwide and perturbed the global economy and ecosystem services. Many studies have reported the presence of SARS-CoV-2 in different environmental compartments, its transmission via environmental routes, and potential environmental challenges posed by the COVID-19 pandemic. None of these studies have comprehensively reviewed the bidirectional relationship between the COVID-19 pandemic and the environment. For the first time, we explored the relationship between the environment and the SARS-CoV-2 virus/COVID-19 and how they affect each other. Supporting evidence presented here clearly demonstrates the presence of SARS-CoV-2 in soil and water, denoting the role of the environment in the COVID-19 transmission process. However, most studies fail to determine if the viral genomes they have discovered are infectious, which could be affected by the environmental factors in which they are found.The potential environmental impact of the pandemic, including water pollution, chemical contamination, increased generation of non-biodegradable waste, and single-use plastics have received the most attention. For the most part, efficient measures have been used to address the current environmental challenges from COVID-19, including using environmentally friendly disinfection technologies and employing measures to reduce the production of plastic wastes, such as the reuse and recycling of plastics. Developing sustainable solutions to counter the environmental challenges posed by the COVID-19 pandemic should be included in national preparedness strategies. In conclusion, combating the pandemic and accomplishing public health goals should be balanced with environmentally sustainable measures, as the two are closely intertwined.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Ecossistema , Pandemias , Plásticos , SARS-CoV-2
4.
Environ Geochem Health ; 45(11): 8417-8432, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37634177

RESUMO

The objectives of this study were to determine selected Hofmeister anions and cations that are important for kidney health, in raw rice samples from selected Chronic Kidney Disease of unknown etiology (CKDu) endemic and non-endemic areas in Sri Lanka and their intake. The anions and cations were analyzed by Ion Chromatography and Microwave Plasma Atomic Emission Spectrometry (MP-AES), respectively, after alkaline and acid digestion in thirty raw rice samples each from CKDu endemic and non-endemic areas, and the dietary intake was estimated. The mean concentrations of fluoride (F-), chloride (Cl-), phosphate (PO43-), sulfate (SO42-), sodium (Na+), magnesium (Mg2+), potassium (K+), and calcium (Ca2+) in raw rice in CKDu endemic areas were 53.317, 1515.3, 2799.6, 2704.9, 30.603, 300.76, 1001.3, and 90.075 mg/kg, respectively. The mean concentration of the anions and cations in raw rice from CKDu non-endemic areas were 22.850, 947.52, 4418.7, 6080.2, 23.862, 364.45, 955.78, and 96.780 mg/kg, respectively. Significantly higher differences (p < 0.05) were reported in the mean concentration of F-, Cl-, and Na+ in raw rice from CKDu endemic areas in comparison with the samples from non-endemic areas. The aggregated estimated daily intake (EDI) and cumulative EDI of F- via consumption of cooked non-traditional samba rice from CKDu endemic areas for adults were the highest (0.155 and 0.172 mg/kg bw/d, respectively), which were higher than the recommended tolerable upper intake value (0.15-0.2 mg/kg bw/d). In contrast, the traditional rice from CKDu non-endemic areas for adolescents, reported the lowest values (0.0210 and 0.0470 mg/kg bw/d, respectively). Adults who consume non-traditional samba rice from CKDu endemic areas were at health risk, while children were the most vulnerable group due to their low body weight. These results indicate that the consumption of rice rich in Hofmeister ions may contribute to the total intake and act as risk factors to negatively affect weak kidneys in CKDu endemic areas. Further research to analyze Hofmeister ions in cooked rice and rice from different countries is recommended.


Assuntos
Oryza , Insuficiência Renal Crônica , Adulto , Criança , Humanos , Adolescente , Oryza/química , Sri Lanka/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/epidemiologia , Doenças Renais Crônicas Idiopáticas , Fluoretos , Ânions , Cátions
5.
Environ Res ; 212(Pt B): 113311, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35460639

RESUMO

Extensive use of per- and polyfluoroalkyl substances (PFASs) in various industrial activities and daily-life products has made them ubiquitous contaminants in soil and water. PFAS-contaminated soil acts as a long-term source of pollution to the adjacent surface water bodies, groundwater, soil microorganisms, and soil invertebrates. While several remediation strategies exist to eliminate PFASs from the soil, strong ionic interactions between charged groups on PFAS with soil constituents rendered these PFAS remediation technologies ineffective. Pilot and field-scale data from recent studies have shown a great potential of PFAS to bio-accumulate and distribute within plant compartments suggesting that phytoremediation could be a potential remediation technology to clean up PFAS contaminated soils. Even though several studies have been performed on the uptake and translocation of PFAS by different plant species, most of these studies are limited to agricultural crops and fruit species. In this review, the role of both aquatic and terrestrial plants in the phytoremediation of PFAS was discussed highlighting different mechanisms underlying the uptake of PFASs in the soil-plant and water-plant systems. This review further summarized a wide range of factors that influence the bioaccumulation and translocation of PFASs within plant compartments including both structural properties of PFASs and physiological properties of plant species. Even though phytoremediation appears to be a promising remediation technique, some limitations that reduced the feasibility of phytoremediation in the practical application have been emphasized in previous studies. Additional research directions are suggested, including advanced genetic engineering techniques and endophyte-assisted phytoremediation to upgrade the phytoremediation potential of plants for the successful removal of PFASs.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Biodegradação Ambiental , Produtos Agrícolas , Fluorocarbonos/análise , Solo/química , Água , Poluentes Químicos da Água/análise
6.
Environ Res ; 211: 113073, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35283075

RESUMO

The objectives of the study were to evaluate and compare the efficacy of hexavalent chromium (Cr(VI)) removal by amino-modified (HDA-MPBC) and pristine biochar (MPBC) derived from an invasive plant Mimosa pigra. Prepared biochars were characterized and batch experiments were conducted to check the performance and the mechanisms of Cr(VI) removal. FTIR spectra revealed that the surface of HDA-MPBC is abundant with amino functional groups which was further confirmed by XPS analysis. The highest Cr(VI) removal for both HDA-MPBC (76%) and MPBC (62%) was observed at pH 3.0. The batch sorption data were well fitted to the Freundlich isotherm model and pseudo-second-order kinetic model, suggesting the involvement of both physisorption and chemisorption mechanisms for Cr(VI) removal. X-ray photoelectron spectroscopy studies showed that both Cr(VI) and Cr(III) were presented at the modified biochar surface after adsorption. These results indicated that the electrostatic attraction of Cr(VI) coupled with reduction of Cr(VI) to Cr(III) and complexation of Cr(III) ions with functional groups on HDA-MPBC as the most plausible mechanism for removal of Cr(VI) by modified biochar. Regeneration experiment concluded that adsorbed Cr(VI) onto the surface of HDA-MPBC had the least tendency of being desorbed in basic conditions. HDA-MPBC showed a high performance in adsorptive removal of Cr(VI) compared to pristine biochar signifying the amino modification to enhance adsorption performance of biochar in Cr(VI) removal from wastewater.


Assuntos
Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Cromo/análise , Cinética , Água , Poluentes Químicos da Água/análise
7.
J Environ Manage ; 236: 428-435, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30769252

RESUMO

This study investigates the adsorption of ciprofloxacin (CPX) onto a municipal solid waste derived biochar (MSW-BC) and a composite material developed by combining the biochar with bentonite clay. A bentonite-MSW slurry was first prepared at 1:5 ratio (w/w), and then pyrolyzed at 450 °C for 30 min. The composite was characterized by scanning electron microscopy (SEM), Powder X-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectroscopy before and after CPX adsorption. Batch experiments were conducted to assess the effect of pH, reaction time and adsorbate dosage. The SEM images confirmed successful modification of the biochar with bentonite showing plate like structures. The PXRD patterns showed changes in the crystalline lattice of both MSW-BC and the composite before and after CPX adsorption whereas the FTIR spectra indicated merging and widening of specific bands after CPX adsorption. The optimum CPX adsorption was achieved at pH 6, and the maximum adsorption capacity of the composite calculated via isotherm modeling was 190 mg/g, which was about 40% higher than the pristine MSW-BC. The Hill isotherm model along with pseudo-second order and Elovich kinetic models showed the best fit to the adsorption data. The most plausible mechanism for increased adsorption capacity is the increased active sites of the composites for CPX adsorption through induced electrostatic interactions between the functional groups of the composite and CPX molecules. The added reactive surfaces in the composite because of bentonite incorporation, and the intercalation of CPX in the clay interlayers improved the adsorption of CPX by the biochar-bentonite composite compared to the pristine biochar. Thus, MSW-BC-bentonite composites could be considered as a potential material for remediating pharmaceuticals in aqueous media.


Assuntos
Bentonita , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Ciprofloxacina , Concentração de Íons de Hidrogênio , Cinética , Resíduos Sólidos , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Environ Manage ; 233: 393-399, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590268

RESUMO

Fluorescence excitation-emission matrix (EEM) spectroscopy coupled with parallel factor analysis (PARAFAC) enables better understanding of the nature of dissolved organic matter (DOM). In the current study, we characterized 10 biochar samples produced from different feedstocks using EEM/PARAFAC analysis. The composition and distribution of DOM substances present in biochar varied significantly according to feedstock, activation, and pyrolysis temperature. The integration of proximate and ultimate analyses of the solid phase together with water extractable organic matter (WEOM) phase of biochar provided new insights into the characterization of biochars, including nature and functionality. Characterization of both WEOM and solid phases is recommended for biochar research before large-scale production for various environmental and industrial applications.


Assuntos
Carvão Vegetal , Substâncias Húmicas , Análise Fatorial , Espectrometria de Fluorescência
9.
J Environ Manage ; 238: 315-322, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852408

RESUMO

The focus of this research was to synthesize novel clay-biochar composites by incorporating montmorillonite (MMT) and red earth (RE) clay materials in a municipal solid waste (MSW) biochar for the adsorptive removal of tetracycline (TC) from aqueous media. X-ray Fluorescence Analysis (XRF), Fourier Transform Infrared Spectroscopy (FTIR), Powder X-ray Diffraction (PXRD) and Scanning Electron Microscopy (SEM) were used for the characterization of the synthesized raw biochar (MSW-BC) and clay-biochar composites (MSW-MMT and MSW-RE). Results showed that minute clay particles were dispersed on biochar surfaces. The FTIR bands due to Si-O functional group vibrations in the spectra of the clay-biochar composites provided further evidence for successful composite formation. The kinetic TC adsorption data of MSW-MMT were well fitted to the Elovich model expressing high surface activity of biochar and involvement of multiple mechanisms in the adsorption. The kinetic TC adsorption data of MSW-BC and MSW-RE were fitted to the pseudo second order model indicating dominant contribution of chemisorption mechanism during the adsorption. The adsorption differentiation obtained in the kinetic studies was mainly due to the structure of the combined clay material. The adsorption isotherm data of all the adsorbents were well fitted to the Freundlich model suggesting that the adsorption of TC onto the materials occurred via both physisorption and chemisorption mechanisms. In comparison to the raw biochar and MSW-RE, MSW-MMT exhibited higher TC adsorption capacity. Therefore, MSW-MMT clay-biochar composite could be applied in the remediation of TC antibiotic residues in contaminated aqueous media.


Assuntos
Argila , Poluentes Químicos da Água , Adsorção , Antibacterianos , Carvão Vegetal , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Environ Geochem Health ; 40(1): 565, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29302893

RESUMO

Unfortunately, in the original publication of the article, Prof. Yong Sik Ok's affiliation was incorrectly published. The author's affiliation is as follows.

11.
Environ Geochem Health ; 39(6): 1501-1511, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28551882

RESUMO

This study assesses the distribution of goiter in the Kalutara District, Sri Lanka in order to find causative factors for the occurrence of goiter even after the salt iodization. A questionnaire survey was conducted at the household level and at the same time iodine and selenium levels of the water sources were analyzed. Questionnaire survey results indicated the highest numbers of goiter patients in the northern part where the lowest were found in the southern sector which may be due to the presence of acid sulfate soils. Females were more susceptible and it even showed a transmittance between generations. Average iodine concentrations in subsurface water of goiter endemic regions are 28.25 ± 15.47 µg/L whereas non-goiter regions show identical values at 24.74 ± 18.29 µg/L. Surface water exhibited relatively high values at 30.87 ± 16.13 µg/L. Endemic goiter was reported in some isolated patches where iodine and selenium concentrations low, latter was <10 µg/L. The formation of acid sulfate soils in the marshy lands in Kalutara district may lead to transformation of biological available iodine oxidation into volatile iodine by humic substances, at the same time organic matter rich peaty soil may have strong held of iodine and selenium which again induced by low pH and high temperature were suggested as the instrumental factors in the endemic goiter in Kalutara district. Hence, geochemical features such as soil pH, organic matter and thick lateritic cap in the Kalutara goiter endemic area play a role in controlling the available selenium and iodine for food chain through plant uptake and in water.


Assuntos
Doenças Endêmicas , Bócio/etiologia , Solo/química , Adulto , Idoso , Feminino , Cadeia Alimentar , Bócio/epidemiologia , Temperatura Alta , Humanos , Substâncias Húmicas/análise , Concentração de Íons de Hidrogênio , Iodo/análise , Masculino , Pessoa de Meia-Idade , Oxirredução , Fatores de Risco , Selênio/análise , Sri Lanka/epidemiologia , Inquéritos e Questionários , Água/química
12.
Environ Geochem Health ; 39(6): 1409-1420, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28332174

RESUMO

This study examined the effects of carbon nanotube and biochar on the bioavailability of Pb, Cu and Sb in the shooting range soils for developing low-cost remediation technology. Commercially available multi-walled carbon nanotube (MWCNT) and biochar pyrolyzed from soybean stover at 300 °C (BC) at 0.5, 1 and 2.5% (w w-1) were used to remediate the contaminated soil in an incubation experiment. Both DTPA (bioavailable) and TCLP (leaching) extraction procedures were used to compare the metal/loid availability and leaching by the amendments in soil. The addition of BC was more effective in immobilizing mobile Pb and Cu in the soil than that in MWCNT. The BC reduced the concentrations of Pb and Cu in the soil by 17.6 and 16.2%, respectively. However, both MWCNTs and BC increased Sb bioavailability by 1.4-fold and 1.6-fold, respectively, in DTPA extraction, compared to the control. The toxicity characteristic leaching procedure (TCLP) test showed that the leachability of Pb in the soil amended with 2.5% MWCNT was 1.3-fold higher than that the unamended soil, whereas the BC at 2.5% decreased the TCLP-extractable Pb by 19.2%. Precipitation and adsorption via electrostatic and π-π electron donor-acceptor interactions were postulated to be involved in the interactions of Pb and Cu with surfaces of the BC in the amended soils, whereas ion exchange mechanisms might be involved in the immobilization of Cu in the MWCNT-amended soils. The application of BC derived from soybean stover can be a low-cost technology for simultaneously immobilizing bioavailable Pb and Cu in the shooting range soils; however, neither of amendments was effective in Sb immobilization.


Assuntos
Antimônio/metabolismo , Carvão Vegetal , Cobre/metabolismo , Chumbo/metabolismo , Nanotubos de Carbono , Poluentes do Solo/metabolismo , Solo/química , Adsorção , Disponibilidade Biológica , Recuperação e Remediação Ambiental/métodos , Temperatura Alta , Glycine max/química , Espectroscopia de Infravermelho com Transformada de Fourier
13.
J Environ Manage ; 151: 443-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25602696

RESUMO

Limited mechanistic knowledge is available on the interaction of biochar with trace elements (Sb and As) that exist predominantly as oxoanions. Soybean stover biochars were produced at 300 °C (SBC300) and 700 °C (SBC700), and characterized by BET, Boehm titration, FT-IR, NMR and Raman spectroscopy. Bound protons were quantified by potentiometric titration, and two acidic sites were used to model biochar by the surface complexation modeling based on Boehm titration and NMR observations. The zero point of charge was observed at pH 7.20 and 7.75 for SBC300 and SBC700, respectively. Neither antimonate (Sb(V)) nor antimonite (Sb(III)) showed ionic strength dependency (0.1, 0.01 and 0.001 M NaNO3), indicating inner sphere complexation. Greater adsorption of Sb(III) and Sb(V) was observed for SBC300 having higher -OH content than SBC700. Sb(III) removal (85%) was greater than Sb(V) removal (68%). Maximum adsorption density for Sb(III) was calculated as 1.88 × 10(-6) mol m(-2). The Triple Layer Model (TLM) successfully described surface complexation of Sb onto soybean stover-derived biochar at pH 4-9, and suggested the formation of monodentate mononuclear and binuclear complexes. Spectroscopic investigations by Raman, FT-IR and XPS further confirmed strong chemisorptive binding of Sb to biochar surfaces.


Assuntos
Antimônio/química , Carvão Vegetal/química , Glycine max , Poluentes do Solo/química , Adsorção , Concentração Osmolar , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Environ Geochem Health ; 37(6): 931-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25794596

RESUMO

High concentration of toxic metals in military shooting range soils poses a significant environmental concern due to the potential release of metals, such as Pb, Cu, and Sb, and hence requires remediation. The current study examined the effectiveness of buffalo weed (Ambrosia trifida L.) biomass and its derived biochars at pyrolytic temperatures of 300 and 700 °C, natural iron oxides (NRE), gibbsite, and silver nanoparticles on metal immobilization together with soil quality after 1-year soil incubation. Destructive (e.g., chemical extractions) and non-destructive (e.g., molecular spectroscopy) methods were used to investigate the immobilization efficacy of each amendment on Pb, Cu, and Sb, and to explore the possible immobilization mechanisms. The highest immobilization efficacy was observed with biochar produced at 300 °C, showing the maximum decreases of bioavailability by 94 and 70% for Pb and Cu, respectively, which were attributed to the abundance of functional groups in the biochar. Biochar significantly increased the soil pH, cation exchange capacity, and P contents. Indeed, the scanning electron microscopic elemental dot mapping and X-ray absorption fine structure spectroscopic (EXAFS) studies revealed associations of Pb with P (i.e., the formation of stable chloropyromorphite [Pb5(PO4)3Cl]) in the biomass- or biochar-amended soils. However, no amendment was effective on Sb immobilization.


Assuntos
Carvão Vegetal/química , Cobre/análise , Recuperação e Remediação Ambiental , Compostos Férricos/química , Nanoestruturas/química , Poluentes do Solo/análise , Solo/química , Ambrosia/química , Antimônio/análise , Antimônio/química , Biomassa , Cobre/química , Chumbo/análise , Chumbo/química , Minerais/química , Fosfatos/química , Fósforo/química , Poluentes do Solo/química
15.
J Environ Manage ; 141: 95-103, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24768839

RESUMO

Sulfonamides (SAs) are one of the most frequently used antibiotics in the veterinary industry, showing high mobility in soils. Objectives of this research were to determine the sorption, distribution coefficients and involvement of different ionic forms of sulfamethazine (SMZ), a representative SAs, and to evaluate the transport of SMZ in biochar treated soils. Biochars were produced from an invasive plant, burcucumber (Sicyos angulatus L.), under slow pyrolysis conditions at peak temperatures of 300 °C (biochar-300) and 700 °C (biochar-700), respectively. The abilities of the biochars to retain SMZ in loamy sand and sandy loam soils were examined under different pHs and SMZ loadings. Soil column experiments were performed with and without biochars addition. Results showed that biochar-700 had a high degree of SMZ retention, with resultant decreased pH in both soils. Modeled effective sorption coefficients (KD,eff) values indicated that the observed high SMZ retention at pH 3 could be attributed to the π-π electron donor-acceptor interaction and electrostatic cation exchange, whereas at pH 5 and 7, cation exchange was the main mechanisms responsible. There was no temporal retardation of SMZ in biochar treated soil as compared to the untreated soil. However, biochar-700 treatment achieved up to 89% and 82% increase in the SMZ retention in sandy loam and loamy sand soils, respectively. The overall results demonstrated that burcucumber biochar produced at higher temperature was effective in reducing the mobility of SMZ in the studied soils.


Assuntos
Antibacterianos/química , Carvão Vegetal , Cucurbitaceae , Poluentes do Solo/química , Sulfametazina/química , Gerenciamento de Resíduos/métodos , Adsorção , Agricultura , Antibacterianos/análise , Espécies Introduzidas , Poluentes do Solo/análise , Sulfametazina/análise , Temperatura
16.
Environ Monit Assess ; 186(6): 3415-29, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24464398

RESUMO

Ultramafic rocks and their related soils (i.e., serpentine soils) are non-anthropogenic sources of metal contamination. Elevated concentrations of metals released from these soils into the surrounding areas and groundwater have ecological-, agricultural-, and human health-related consequences. Here we report the geochemistry of four different serpentine soil localities in Sri Lanka by coupling interpretations garnered from physicochemical properties and chemical extractions. Both Ni and Mn demonstrate appreciable release in water from the Ussangoda soils compared to the other three localities, with Ni and Mn metal release increasing with increasing ionic strengths at all sites. Sequential extraction experiments, utilized to identify "elemental pools," indicate that Mn is mainly associated with oxides/(oxy)hydroxides, whereas Ni and Cr are bound in silicates and spinels. Nickel was the most bioavailable metal compared to Mn and Cr in all four soils, with the highest value observed in the Ussangoda soil at 168 ± 6.40 mg kg(-1) via the 0.01-M CaCl2 extraction. Although Mn is dominantly bound in oxides/(oxy)hydroxides, Mn is widely dispersed with concentrations reaching as high as 391 mg kg(-1) (Yudhaganawa) in the organic fraction and 49 mg kg(-1) (Ussangoda) in the exchangeable fraction. Despite Cr being primarily retained in the residual fraction, the second largest pool of Cr was in the organic matter fraction (693 mg kg(-1) in the Yudhaganawa soil). Overall, our results support that serpentine soils in Sri Lanka offer a highly labile source of metals to the critical zone.


Assuntos
Monitoramento Ambiental , Metais/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Agricultura , Água Subterrânea/química , Solo/química , Sri Lanka
17.
Chemosphere ; 353: 141490, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417494

RESUMO

Fluoride ion (F-) is one of the major geogenic contaminants in water and soil. Excessive consumption of these geogenic contaminants poses serious health impacts on humans and plants. In this study, a novel carbonaceous material, nano-bonechar, was synthesized from cow bones and applied as a soil amendment at rates of 0, 0.5, 1, and 2% to remediate and revitalize naturally F--contaminated soil. The results revealed that the nano-bonechar significantly reduced the mobility and bioavailability of F- by 90% in the contaminated soil, and improved the soil quality by increasing the soil water holding capacity, soil organic matter, and the bioavailable contents of PO43-, Ca2+, and Na+. Subsequently, the pot experiment results showed a significant reduction in the uptake of F- by 93% in Zea mays plants. Moreover, the nano-bonechar application improved the plant's growth, as indicated by the higher fresh and dry weights, root and shoot lengths, and total content of PO43-, Ca2+, and K+ than those of un-amended soil. The F-immobilization in soil was mainly due to the presence of the hydroxyapatite [Ca10(PO4)6(OH)2] mineral in the nano-bonechar. Ion exchange between OH- (of nano-bonechar) and F- (of soil), and the formation of insoluble fluorite (CaF2) contributed to the attenuation of F- mobility in the soil. It is concluded that nano-bonechar, due to its size and enrichment in hydroxyapatite, could successfully be utilized for the rapid remediation and revitalization of F--contaminated agricultural soil.


Assuntos
Fluoretos , Poluentes do Solo , Humanos , Poluentes do Solo/análise , Solo , Água , Hidroxiapatitas
18.
Sci Total Environ ; 912: 169026, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056656

RESUMO

The improper management of solid waste, particularly the dumping of untreated municipal solid waste, poses a growing global challenge in both developed and developing nations. The generation of leachate is one of the significant issues that arise from this practice, and it can have harmful impacts on both the environment and public health. This paper presents an overview of the primary waste types that generate landfill leachate and their characteristics. This includes examining the distribution of waste types in landfills globally and how they have changed over time, which can provide valuable insights into potential pollutants in a given area and their trends. With a lack of specific regulations and growing concerns regarding environmental and health impacts, the paper also focuses on emerging contaminants. Furthermore, the environmental and ecological impacts of leachate, along with associated health risks, are analyzed. The potential applications of landfill leachate, suggested interventions and future directions are also discussed in the manuscript. Finally, this work addresses future research directions in landfill leachate studies, with attention, for the first time to the potentialities that artificial intelligence can offer for landfill leachate management, studies, and applications.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Humanos , Resíduos Sólidos/análise , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Inteligência Artificial , Meio Ambiente , Instalações de Eliminação de Resíduos
19.
Environ Sci Technol ; 47(17): 9722-9, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23952582

RESUMO

Chromium is abundantly and primarily present as Cr(III) in ultramafic rocks and serpentine soils. Chromium(III) oxidation involving chromite (FeCr2O4) via interactions with birnessite has been shown to be a major pathway of Cr(VI) production in serpentine soils. Alternatively, Cr(III)-bearing silicates with less Cr(III) may provide higher Cr(VI) production rates compared to relatively insoluble chromite. Of the potential Cr(III)-bearing silicates, Cr(III)-muscovite (i.e., fuchsite) commonly occurs in metamorphosed ultramafic rocks and dissolution rates may be comparable to other common Cr(III)-bearing phyllosilicates and clays. Here, we examine the formation of Cr(VI) related to Cr(III)-muscovite and birnessite (i.e., acid birnessite) interactions with and without humic matter (HM) via batch experiments. Experimentally, the fastest rate of Cr(VI) production involving Cr(III)-muscovite was 3.8 × 10(-1) µM h(-1) (pH 3 without HM). Kinetically, Cr(III)-muscovite provides a major pathway for Cr(VI) formation and Cr(VI) production rates may exceed those involving chromite depending on pH, available mineral surface areas in solution, and the abundance of Cr(III) present. However, when HM is introduced to the system, Cr(VI) production rates decrease by as much as 80%. This highlights that HM strongly decreases but may not completely suppress the formation and mobilization of Cr(VI). A Sri Lankan serpentine soil was utilized to provide context with regards to the experimental results. Despite Cr(VI) in the soil solids and Cr(VI) formation being favorable from Cr(III)-bearing minerals, no detectable Cr(VI) was released into soil solutions potentially due to the abundance of HM. Overall, the dynamic interactions of Cr(III)-bearing silicates and birnessite provide a kinetically favorable route of Cr(VI) formation which is tempered by humic matter.


Assuntos
Silicatos de Alumínio/química , Cromo/química , Água Subterrânea/análise , Óxidos/química , Poluentes do Solo/química , Monitoramento Ambiental , Substâncias Húmicas/análise , Oxirredução , Solo/química , Sri Lanka
20.
Environ Pollut ; 320: 121054, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36634859

RESUMO

Exposure to excess fluoride is a controversial public health concern as it can cause dental/skeletal fluorosis as well as renal toxicity. The study intended to evaluate the synergistic interaction of clay intercalation and thermochemical modification on corncob biochar to remove fluoride from aqueous solutions. Layered double hydroxide was assorted with thermally activated (torrefaction and pyrolysis) corncob biochar at 1:1 (w/w) ratio to obtain composites called LDH-CCBC250 and LDH-CCBC500. Physicochemically characterized adsorbents were assessed against the pH (3-9), reaction time (up to 12 h) and initial fluoride concentration (0.5-10 mg L-1) for defluoridation. The porous structure of biochar was found to be richer compared to biocharcoal. The adsorption performance of LDH-CCBC500 was 6-fold higher compared to LDH-CCBC250 signifying the pronounced effect of thermal activation. Fluoride adsorption was pH dependent, and the best pH was in the range of pH 3.5-5.0 and there was no ionic strength dependency. Fluoride uptake by LDH-CCBC500 follows pseudo-second order and Elovich kinetic models, which suggests a chemisorption process followed by physisorption. The most expected way to eliminate fluoride by LDH-CCBC500, which had a maximum adsorption capacity of 7.24 mg g-1, was cooperative chemical adsorption upon the Langmuir and Hills isotherm (r2 = 0.99) parameters. Layered double hydroxide intercalated corncob biochar derived from slow pyrolysis is best performing in acidic waters.


Assuntos
Fluoretos , Poluentes Químicos da Água , Temperatura , Zea mays , Poluentes Químicos da Água/análise , Hidróxidos/química , Água , Carvão Vegetal/química , Cinética , Adsorção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa