Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theor Appl Genet ; 130(6): 1081-1098, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28314933

RESUMO

KEY MESSAGE: Current development of advanced biotechnology tools allows us to characterize the role of key genes in plant productivity. The implementation of this knowledge in breeding strategies might accelerate the progress in obtaining high-yielding cultivars. The achievements of the Green Revolution were based on a specific plant ideotype, determined by a single gene involved in gibberellin signaling or metabolism. Compared with the 1950s, an enormous increase in our knowledge about the biological basis of plant productivity has opened new avenues for novel breeding strategies. The large and complex genomes of diploid barley and hexaploid wheat represent a great challenge, but they also offer a large reservoir of genes that can be targeted for breeding. We summarize examples of productivity-related genes/mutants in wheat and barley, identified or characterized by means of modern biology. The genes are classified functionally into several groups, including the following: (1) transcription factors, regulating spike development, which mainly affect grain number; (2) genes involved in metabolism or signaling of growth regulators-cytokinins, gibberellins, and brassinosteroids-which control plant architecture and in consequence stem hardiness and grain yield; (3) genes determining cell division and proliferation mainly impacting grain size; (4) floral regulators influencing inflorescence architecture and in consequence seed number; and (5) genes involved in carbohydrate metabolism having an impact on plant architecture and grain yield. The implementation of selected genes in breeding programs is discussed, considering specific genotypes, agronomic and climate conditions, and taking into account that many of the genes are members of multigene families.


Assuntos
Genes de Plantas , Hordeum/genética , Sementes/crescimento & desenvolvimento , Triticum/genética , Brassinosteroides/química , Metabolismo dos Carboidratos , Citocininas/genética , Flores/fisiologia , Giberelinas/genética , Melhoramento Vegetal , Proteínas de Plantas/genética , Fatores de Transcrição/genética
2.
PLoS One ; 9(12): e115729, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531889

RESUMO

Cytokinin oxidase/dehydrogenase proteins (CKX) are encoded by a multigene family of CKX genes with a varying number of members depending on species. For some of the genes, spectacular effects on grain production in selected cereals have been observed. Despite the fact that partial or full length sequences of most HvCKX genes in barley (Hordeum vulgare) have already been published, in most cases their specific biological functions have not been reported. Detailed expression patterns for five HvCKX genes in different organs/tissues of developing barley plants coupled with analysis of RNAi silent for two genes are presented to test the hypothesis that these expression profiles might indicate their function. Elevated expression for four of them - HvCKX1, HvCKX9, HvCKX4, and HvCKX11 - was found in developing kernels of wild-type plants compared to other tissues. HvCKX5 was mainly expressed in leaf tissue. Lower expression was noted for HvCKX1 in seedling roots and for HvCKX9 in leaves. The documented effect of RNAi silencing of HvCKX1 and a trend for HvCKX9 was higher plant productivity, and the trait was inherited through four generations. Higher plant yield was determined by higher numbers of seeds and spikes. Increased productivity was significantly greater in HvCKX1 silenced plants showing higher relative expression of HvCKX1 in developing kernels of wild-type plants compared to the expression of HvCKX9. Both HvCKX1 silenced T1 seedlings of cv. Golden Promise and the newly transformed breeding line STH7308 showed greater root mass, but this trait was not inherited in the next generation. Similarly HvCKX9 silenced T1 seedlings exhibited greater plant height without inheritance in the next generation. It is suggested that these effects were not inherited because of compensation by other genes co-ordinately regulating reproductive development. One line with untypically changed, inherited phenotype, which was selected from several dozen silenced lines showing stable and common phenotypes is presented.


Assuntos
Regulação da Expressão Gênica de Plantas , Hordeum/crescimento & desenvolvimento , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reprodução/fisiologia , Hordeum/enzimologia , Hordeum/genética , Oxirredutases/antagonistas & inibidores , Oxirredutases/genética , Fenótipo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa