Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cell Mol Life Sci ; 79(7): 368, 2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35718804

RESUMO

Involvement of alpha-synuclein (αSyn) in Parkinson's disease (PD) is complicated and difficult to trace on cellular and molecular levels. Recently, we established that αSyn can regulate mitochondrial function by voltage-activated complexation with the voltage-dependent anion channel (VDAC) on the mitochondrial outer membrane. When complexed with αSyn, the VDAC pore is partially blocked, reducing the transport of ATP/ADP and other metabolites. Further, αSyn can translocate into the mitochondria through VDAC, where it interferes with mitochondrial respiration. Recruitment of αSyn to the VDAC-containing lipid membrane appears to be a crucial prerequisite for both the blockage and translocation processes. Here we report an inhibitory effect of HK2p, a small membrane-binding peptide from the mitochondria-targeting N-terminus of hexokinase 2, on αSyn membrane binding, and hence on αSyn complex formation with VDAC and translocation through it. In electrophysiology experiments, the addition of HK2p at micromolar concentrations to the same side of the membrane as αSyn results in a dramatic reduction of the frequency of blockage events in a concentration-dependent manner, reporting on complexation inhibition. Using two complementary methods of measuring protein-membrane binding, bilayer overtone analysis and fluorescence correlation spectroscopy, we found that HK2p induces detachment of αSyn from lipid membranes. Experiments with HeLa cells using proximity ligation assay confirmed that HK2p impedes αSyn entry into mitochondria. Our results demonstrate that it is possible to regulate αSyn-VDAC complexation by a rationally designed peptide, thus suggesting new avenues in the search for peptide therapeutics to alleviate αSyn mitochondrial toxicity in PD and other synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Células HeLa , Humanos , Lipídeos , Mitocôndrias/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , alfa-Sinucleína/metabolismo
2.
Anal Chem ; 91(13): 8466-8475, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31247720

RESUMO

Intracellular pH plays a key role in physiology, and its measurement in living specimens remains a crucial task in biology. Fluorescent protein-based pH sensors have gained widespread use, but there is limited spectral diversity for multicolor detection, and it remains a challenge to measure absolute pH values. Here we demonstrate that mCherryTYG is an excellent fluorescence lifetime pH sensor that significantly expands the modalities available for pH quantification in live cells. We first report the 1.09 Å X-ray crystal structure of mCherryTYG, exhibiting a fully matured chromophore. We next determine that it has an extraordinarily large dynamic range with a 2 ns lifetime change from pH 5.5 to 9.0. Critically, we find that the sensor maintains a p Ka of 6.8 independent of environment, whether as the purified protein in solution or expressed in live cells. Furthermore, the lifetime measurements are robustly independent of total fluorescence intensity and scatter. We demonstrate that mCherryTYG is a highly effective sensor using time-resolved fluorescence spectroscopy on live-cell suspensions, which has been previously overlooked as an easily accessible approach for quantifying intracellular pH. As a red fluorescent sensor, we also demonstrate that mCherryTYG is spectrally compatible with the ATeam sensor and EGFP for simultaneous dual-color measurements of intracellular pH, ATP, and extracellular pH. In a proof-of-concept, we quantify acute respiration-dependent pH homeostasis that exhibits a stoichiometric relationship with the ATP-generating capacity of the carbon fuel choice in E. coli. Broadly speaking, our work presents a previously unemployed methodology that will greatly facilitate continuous pH quantification.


Assuntos
Técnicas Biossensoriais/métodos , Respiração Celular , Escherichia coli/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Espectrometria de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio
4.
Biophys J ; 109(2): 240-8, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26200860

RESUMO

Probes and biosensors that incorporate luminescent Tb(III) or Eu(III) complexes are promising for cellular imaging because time-gated microscopes can detect their long-lifetime (approximately milliseconds) emission without interference from short-lifetime (approximately nanoseconds) fluorescence background. Moreover, the discrete, narrow emission bands of Tb(III) complexes make them uniquely suited for multiplexed imaging applications because they can serve as Förster resonance energy transfer (FRET) donors to two or more differently colored acceptors. However, lanthanide complexes have low photon emission rates that can limit the image signal/noise ratio, which has a square-root dependence on photon counts. This work describes the performance of a wide-field, time-gated microscope with respect to its ability to image Tb(III) luminescence and Tb(III)-mediated FRET in cultured mammalian cells. The system employed a UV-emitting LED for low-power, pulsed excitation and an intensified CCD camera for gated detection. Exposure times of ∼1 s were needed to collect 5-25 photons per pixel from cells that contained micromolar concentrations of a Tb(III) complex. The observed photon counts matched those predicted by a theoretical model that incorporated the photophysical properties of the Tb(III) probe and the instrument's light-collection characteristics. Despite low photon counts, images of Tb(III)/green fluorescent protein FRET with a signal/noise ratio ≥ 7 were acquired, and a 90% change in the ratiometric FRET signal was measured. This study shows that the sensitivity and precision of lanthanide-based cellular microscopy can approach that of conventional FRET microscopy with fluorescent proteins. The results should encourage further development of lanthanide biosensors that can measure analyte concentration, enzyme activation, and protein-protein interactions in live cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia/métodos , Térbio , Animais , Calibragem , Cães , Transferência Ressonante de Energia de Fluorescência/instrumentação , Proteínas de Fluorescência Verde/metabolismo , Luminescência , Células Madin Darby de Rim Canino/citologia , Células Madin Darby de Rim Canino/metabolismo , Microscopia/instrumentação , Fótons
5.
Bioconjug Chem ; 26(3): 460-5, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25675354

RESUMO

Strategies that leverage bio-orthogonal interactions between small molecule ligands and genetically encoded amino acid sequences can be used to attach high-performance fluorophores to proteins in living cells. However, a major limitation of chemical protein labeling is that cells' plasma membranes are impermeable to many useful probes and biolabels. Here, we show that conjugation to nonaarginine, a cell penetrating peptide (CPP), enables passive cytoplasmic delivery of otherwise membrane-impermeant, small molecule protein labels. Heterodimers consisting of a luminescent Tb(3+) complex, Lumi4, linked to benzyl guanine, benzyl cytosine, and trimethoprim were conjugated to the peptide CysArg9 with a reducible disulfide linker. When added to culture medium, the peptide conjugates rapidly (<30 min) enter the cytoplasm and diffuse freely throughout cells. The benzyl guanine, benzyl cytosine, and trimethoprim derivatives bind selectively to fusion proteins tagged with SNAP-Tag, CLIP-Tag, and Escherichia coli dihydrofolate reductase (eDHFR), respectively. Furthermore, eDHFR and SNAP-Tag fusions can be labeled with Lumi4 analogues in the same cell, and this labeling can be detected using two-color, time-gated Förster resonance energy transfer (FRET) microscopy. Finally, we present quantitative data showing that cytoplasmic uptake of nonaarginine-conjugated probes occurs in multiple cell types (MDCK, HeLa, NIH 3T3), most cells in a culture (>75%) are loaded with probe, and the cellular probe concentration can be controlled by varying incubation conditions. CPP-mediated delivery of Lumi4-linked protein labels will greatly increase the utility of lanthanide-based FRET microscopy. Moreover, our results strongly suggest that this approach can be adapted to deliver a wide variety of protein-targeted fluorophores or other functional probes that were previously unavailable for intracellular imaging studies.


Assuntos
Arginina/metabolismo , Citoplasma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Oligopeptídeos/metabolismo , Transporte Proteico/fisiologia , Coloração e Rotulagem/métodos , Animais , Arginina/química , Cães , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Camundongos , Células NIH 3T3 , Oligopeptídeos/química
6.
Inorg Chem ; 53(4): 1839-53, 2014 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-24144069

RESUMO

In order to deduce the molecular mechanisms of biological function, it is necessary to monitor changes in the subcellular location, activation, and interaction of proteins within living cells in real time. Förster resonance energy-transfer (FRET)-based biosensors that incorporate genetically encoded, fluorescent proteins permit high spatial resolution imaging of protein-protein interactions or protein conformational dynamics. However, a nonspecific fluorescence background often obscures small FRET signal changes, and intensity-based biosensor measurements require careful interpretation and several control experiments. These problems can be overcome by using lanthanide [Tb(III) or Eu(III)] complexes as donors and green fluorescent protein (GFP) or other conventional fluorophores as acceptors. Essential features of this approach are the long-lifetime (approximately milliseconds) luminescence of Tb(III) complexes and time-gated luminescence microscopy. This allows pulsed excitation, followed by a brief delay, which eliminates nonspecific fluorescence before the detection of Tb(III)-to-GFP emission. The challenges of intracellular delivery, selective protein labeling, and time-gated imaging of lanthanide luminescence are presented, and recent efforts to investigate the cellular uptake of lanthanide probes are reviewed. Data are presented showing that conjugation to arginine-rich, cell-penetrating peptides (CPPs) can be used as a general strategy for the cellular delivery of membrane-impermeable lanthanide complexes. A heterodimer of a luminescent Tb(III) complex, Lumi4, linked to trimethoprim and conjugated to nonaarginine via a reducible disulfide linker rapidly (∼10 min) translocates into the cytoplasm of Maden Darby canine kidney cells from the culture medium. With this reagent, the intracellular interaction between GFP fused to FK506 binding protein 12 (GFP-FKBP12) and the rapamycin binding domain of mTOR fused to Escherichia coli dihydrofolate reductase (FRB-eDHFR) were imaged at high signal-to-noise ratio with fast (1-3 s) image acquisition using a time-gated luminescence microscope. The data reviewed and presented here show that lanthanide biosensors enable fast, sensitive, and technically simple imaging of protein-protein interactions in live cells.


Assuntos
Técnicas Biossensoriais , Rastreamento de Células , Elementos da Série dos Lantanídeos/química , Proteínas/química , Animais , Humanos
7.
Chemistry ; 18(35): 10825-9, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22807190

RESUMO

Release after transmission: Arginine-rich, cell-penetrating peptides (CPPs) mediate cytoplasmic delivery of trimethoprim (TMP)-terbium complex conjugates and selective, intracellular labeling of E. coli dihydrofolate reductase (eDHFR) fusion proteins. A disulfide bond linking CPP and cargo is reduced following uptake. CPP conjugation can be used to deliver otherwise cell-impermeable, ligand-fluorophore conjugates.


Assuntos
Arginina/química , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Térbio/química , Sequência de Aminoácidos , Animais , Arginina/metabolismo , Linhagem Celular , Permeabilidade da Membrana Celular , Peptídeos Penetradores de Células/metabolismo , Cães , Portadores de Fármacos/metabolismo , Endocitose , Escherichia coli , Corantes Fluorescentes , Proteínas Luminescentes/química , Proteínas Luminescentes/metabolismo , Imagem Molecular , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Coloração e Rotulagem
8.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210324, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36189806

RESUMO

Mitochondria are ubiquitous organelles that play a pivotal role in the supply of energy through the production of adenosine triphosphate in all eukaryotic cells. The importance of mitochondria in cells is demonstrated in the poor survival outcomes observed in patients with defects in mitochondrial gene or RNA expression. Studies have identified that mitochondria are influenced by the cell's cytoskeletal environment. This is evident in pathological conditions such as cardiomyopathy where the cytoskeleton is in disarray and leads to alterations in mitochondrial oxygen consumption and electron transport. In cancer, reorganization of the actin cytoskeleton is critical for trans-differentiation of epithelial-like cells into motile mesenchymal-like cells that promotes cancer progression. The cytoskeleton is critical to the shape and elongation of neurons, facilitating communication during development and nerve signalling. Although it is recognized that cytoskeletal proteins physically tether mitochondria, it is not well understood how cytoskeletal proteins alter mitochondrial function. Since end-stage disease frequently involves poor energy production, understanding the role of the cytoskeleton in the progression of chronic pathology may enable the development of therapeutics to improve energy production and consumption and slow disease progression. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Assuntos
Proteínas do Citoesqueleto , Neoplasias , Trifosfato de Adenosina/metabolismo , Fenômenos Fisiológicos Celulares , Proteínas do Citoesqueleto/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , RNA/metabolismo
9.
Cell Calcium ; 94: 102356, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529977

RESUMO

Voltage-dependent anion channel (VDAC), the most abundant mitochondrial outer membrane protein, is important for a variety of mitochondrial functions including metabolite exchange, calcium transport, and apoptosis. While VDAC's role in shuttling metabolites between the cytosol and mitochondria is well established, there is a growing interest in understanding the mechanisms of its regulation of mitochondrial calcium transport. Here we review the current literature on VDAC's role in calcium signaling, its biophysical properties, physiological function, and pathology focusing on its importance in cardiac diseases. We discuss the specific biophysical properties of the three VDAC isoforms in mammalian cells-VDAC 1, 2, and 3-in relationship to calcium transport and their distinct roles in cell physiology and disease. Highlighting the emerging evidence that cytosolic proteins interact with VDAC and regulate its calcium permeability, we advocate for continued investigation into the VDAC interactome at the contact sites between mitochondria and organelles and its role in mitochondrial calcium transport.


Assuntos
Fenômenos Biofísicos , Sinalização do Cálcio , Doença , Mitocôndrias/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos
10.
ACS Omega ; 3(8): 9476-9486, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30197999

RESUMO

The regulation of pH is essential for proper organelle function, and organelle-specific changes in pH often reflect the dynamics of physiological signaling and metabolism. For example, mitochondrial energy production depends on the proton gradient maintained between the alkaline mitochondrial matrix and neutral cytosol. However, we still lack a quantitative understanding of how pH dynamics are coupled between compartments and how pH gradients are regulated at organelle boundaries. Genetically encoded pH sensors are well suited to address this problem because they can be targeted to specific subcellular locations and they facilitate live, single-cell analysis. However, most of these pH sensors are derivatives of green and yellow fluorescent proteins that are not spectrally compatible for dual-compartment imaging. Therefore, there is a need for ratiometric red fluorescent protein pH sensors that enable quantitative multicolor imaging of spatially resolved pH dynamics. In this work, we demonstrate that the I158E/Q160A mutant of the red fluorescent protein mCherry is an effective ratiometric pH sensor. It has a pKa of 7.3 and a greater than 3-fold change in ratio signal. To demonstrate its utility in cells, we measured activity and metabolism-dependent pH dynamics in cultured primary neurons and neuroblastoma cells. Furthermore, we were able to image pH changes simultaneously in the cytosol and mitochondria by using the mCherryEA mutant together with the green fluorescent pH sensor, ratiometric-pHluorin. Our results demonstrate the feasibility of studying interorganelle pH dynamics in live cells over time and the broad applicability of these sensors in studying the role of pH regulation in metabolism and signaling.

11.
Biol Bull ; 231(1): 73-84, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27638696

RESUMO

Adenosine triphosphate (ATP) is a universal mediator of metabolism and signaling across unicellular and multicellular species. There is a fundamental interdependence between the dynamics of ATP and the physiology that occurs inside and outside the cell. Characterizing and understanding ATP dynamics provide valuable mechanistic insight into processes that range from neurotransmission to the chemotaxis of immune cells. Therefore, we require the methodology to interrogate both temporal and spatial components of ATP dynamics from the subcellular to the organismal levels in live specimens. Over the last several decades, a number of molecular probes that are specific to ATP have been developed. These probes have been combined with imaging approaches, particularly optical microscopy, to enable qualitative and quantitative detection of this critical molecule. In this review, we survey current examples of technologies available for visualizing ATP in living cells, and identify areas where new tools and approaches are needed to expand our capabilities.


Assuntos
Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Animais , Aptâmeros de Nucleotídeos/química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Transferência Ressonante de Energia de Fluorescência , Microscopia , Imagem Molecular , Sondas Moleculares/química , Imagem Óptica
12.
Curr Protoc Cytom ; 67: 2.22.1-2.22.36, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24510771

RESUMO

The sensitivity of filter-based fluorescence microscopy techniques is limited by autofluorescence background. Time-gated detection is a practical way to suppress autofluorescence, enabling higher contrast and improved sensitivity. In the past few years, three groups of authors have demonstrated independent approaches to build robust versions of time-gated luminescence microscopes. Three detailed, step-by-step protocols are provided here for modifying standard fluorescent microscopes to permit imaging time-gated luminescence.


Assuntos
Luminescência , Microscopia/instrumentação , Calibragem , Emulsões , Microesferas , Óleos , Processamento de Sinais Assistido por Computador , Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa