Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Res ; 216(Pt 3): 114705, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328227

RESUMO

In this study, the sol-gel technique was used to develop Cobalt Sulfur codoped Titanium Dioxide (Co-S codoped TiO2) photocatalysts. For structural analysis of the prepared resultant TiO2 samples, XRD, FTIR, UV-Vis DRS, SEM, HR-TEM and EDX measurements were used to describe the produced photocatalysts. The characterization findings indicate that the synthesized nanoparticles possessed great crystallinity, high purity, and superior optical characteristics. For the methylene blue (MB) degradation process, Co-S codoped TiO2 nanoparticles were tested for their photocatalytic degradation performance. The Co-S codoped TiO2 nanoparticles had improved catalytic activity when compared with pure, Co-doped, S-doped TiO2 and decomposed 93% of MB in 120 min. When compared to pure and doped TiO2, the catalysts of Co-S codoped TiO2 showed a synergistic effect and improved the performance of the catalysts. Furthermore, the antibacterial applications of synthesized Co-S codoped TiO2 nanoparticles was studied against E. coli (Gram negative) and S. aureus (Gram positive) bacteria and exhibited strong antibacterial activity against the selected strains.


Assuntos
Cobalto , Escherichia coli , Staphylococcus aureus , Titânio/química , Luz , Catálise , Enxofre/química , Enxofre/farmacologia , Azul de Metileno , Antibacterianos/farmacologia
2.
J Med Genet ; 59(10): 984-992, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34916228

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a genetic heart muscle disease with preserved or increased ejection fraction in the absence of secondary causes. Mutations in the sarcomeric protein-encoding genes predominantly cause HCM. However, relatively little is known about the genetic impact of signalling proteins on HCM. METHODS AND RESULTS: Here, using exome and targeted sequencing methods, we analysed two independent cohorts comprising 401 Indian patients with HCM and 3521 Indian controls. We identified novel variants in ribosomal protein S6 kinase beta-1 (RPS6KB1 or S6K1) gene in two unrelated Indian families as a potential candidate gene for HCM. The two unrelated HCM families had the same heterozygous missense S6K1 variant (p.G47W). In a replication association study, we identified two S6K1 heterozygotes variants (p.Q49K and p.Y62H) in the UK Biobank cardiomyopathy cohort (n=190) compared with matched controls (n=16 479). These variants are neither detected in region-specific controls nor in the human population genome data. Additionally, we observed an S6K1 variant (p.P445S) in an Arab patient with HCM. Functional consequences were evaluated using representative S6K1 mutated proteins compared with wild type in cellular models. The mutated proteins activated the S6K1 and hyperphosphorylated the rpS6 and ERK1/2 signalling cascades, suggesting a gain-of-function effect. CONCLUSIONS: Our study demonstrates for the first time that the variants in the S6K1 gene are associated with HCM, and early detection of the S6K1 variant carriers can help to identify family members at risk and subsequent preventive measures. Further screening in patients with HCM with different ethnic populations will establish the specificity and frequency of S6K1 gene variants.


Assuntos
Cardiomiopatia Hipertrófica , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Cardiomiopatias/genética , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Exoma , Heterozigoto , Humanos , Mutação , Proteínas Quinases S6 Ribossômicas/genética
3.
J Environ Manage ; 247: 104-114, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234045

RESUMO

The BiFeO3/V2O5 has been successfully synthesized by simple annealing of BiFeO3 nanoplates and V2O5 nanoflower. The phase, structural, optical properties and chemical state of the BiFeO3, V2O5 and different composition of BiFeO3/V2O5 samples were comparatively characterized by various spectroscopic and microscopic techniques. The prepared catalyst exhibits unique photo catalytic and post-oxidation/reduction ability for removal of various (MB, Phenol, CV, RhB) water organic pollutants. Compared to pure BiFeO3 and V2O5, the different Wt % of BiFeO3/V2O5 composition exhibited higher photo catalytic activity. The fortunate BiFeO3/V2O5 interface hybrid photo catalyst makes a significant impact in the enhancement of photo catalytic reaction. This remarkable efficiency could be ascribed to the synergistic effect between the V2O5 petals and BiFeO3 plates. The exceptional morphology, increased surface area, uniformity, less-agglomerated spreading could increase the ability of visible light response, which lead the improved electron transport ability and the higher charge separation. The enhanced rate of photo generated charge carriers separations were evinced by the EIS and PL spectrum measurements. The allowed radical trapping experiment divulge that the hole (h+), and super oxide radical (O2-) are the minimized effect in degradation, on the other hand hydroxyl radical (OH) is plays the foremost role and act as the active radicals in the catalytic organism. In relations of above investigation, a probable photo degradation mechanism of the as-synthesized photo catalyst is carefully explicated. This effort delivers an effective approach to design and fabricate the efficient photo catalyst through integrating of materials, which has a potential for industrial waste water purification.


Assuntos
Purificação da Água , Catálise , Luz , Oxirredução , Fenol
4.
Nanomedicine ; 14(3): 1045-1049, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29408656

RESUMO

Management of fungal biofilms represents a significant challenge to healthcare. As a preventive approach, minimizing adhesion between indwelling medical devices and microorganisms would be an important step forward. This study investigated the anti-fouling capacity of engineered nanoscale topographies to the pathogenic yeast Candida albicans. Highly ordered arrays of nano-pit topographies were shown to significantly reduce the physical adherence capacity of C. albicans. This study shows a potential of nanoscale patterns to inhibit and prevent pathogenic biofilm formation on biomedical substrates.


Assuntos
Antifúngicos/administração & dosagem , Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Bioimpressão/métodos , Candida albicans/fisiologia , Nanotecnologia/métodos , Polímeros/administração & dosagem , Antifúngicos/química , Antifúngicos/metabolismo , Polímeros/química , Polímeros/metabolismo , Propriedades de Superfície
5.
Mol Microbiol ; 96(1): 42-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25597841

RESUMO

Aspergillus fumigatus is a fungal pathogen that is capable of adapting to different host niches and to avoid host defenses. An enhanced understanding of how, and which, A. fumigatus signal transduction pathways are engaged in the regulation of these processes is essential for the development of improved disease control strategies. Protein phosphatases are central to numerous signal transduction pathways. To comprehend the functions of protein phosphatases in A. fumigatus, 32 phosphatase catalytic subunit encoding genes were identified. We have recognized PtcB as one of the phosphatases involved in the high osmolarity glycerol response (HOG) pathway. The ΔptcB mutant has both increased phosphorylation of the p38 MAPK (SakA) and expression of osmo-dependent genes. The ΔptcB strain was more sensitive to cell wall damaging agents, had increased chitin and ß-1,3-glucan, and impaired biofilm formation. The ΔptcB strain was avirulent in a murine model of invasive pulmonary aspergillosis. These results stress the importance of the HOG pathway in the regulation of pathogenicity determinants and virulence in A. fumigatus.


Assuntos
Aspergillus fumigatus/fisiologia , Aspergillus fumigatus/patogenicidade , Regulação Fúngica da Expressão Gênica , Glicerol/metabolismo , Concentração Osmolar , Monoéster Fosfórico Hidrolases/genética , Animais , Aspergillus fumigatus/genética , Aspergillus fumigatus/ultraestrutura , Biofilmes/crescimento & desenvolvimento , Parede Celular/metabolismo , Quitina/metabolismo , Biologia Computacional , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Camundongos , Mutação , Monoéster Fosfórico Hidrolases/metabolismo , Transdução de Sinais , beta-Glucanas/metabolismo
6.
Eukaryot Cell ; 14(8): 834-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26092919

RESUMO

Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections.


Assuntos
Acetilcolina/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Hemócitos/efeitos dos fármacos , Mariposas/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Larva/microbiologia
7.
Eukaryot Cell ; 14(8): 728-44, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25911225

RESUMO

Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased ß-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.


Assuntos
Aspergillus fumigatus/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/metabolismo , Adesão Celular/fisiologia , Parede Celular/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Virulência/fisiologia , Animais , Quitina/metabolismo , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/metabolismo , Aspergilose Pulmonar Invasiva/metabolismo , Aspergilose Pulmonar Invasiva/microbiologia , Pneumopatias Fúngicas/metabolismo , Pneumopatias Fúngicas/microbiologia , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Biofouling ; 32(10): 1259-1270, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27841027

RESUMO

Chronic diabetic foot ulcers are frequently colonised and infected by polymicrobial biofilms that ultimately prevent healing. This study aimed to create a novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments. Inter-kingdom triadic biofilms composed of Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus were shown to be quantitatively greater in this model compared to a simple substratum when assessed by conventional culture, metabolic dye and live dead qPCR. These biofilms were both structurally complex and compositionally dynamic in response to topical therapy, so when treated with either chlorhexidine or povidone iodine, principal component analysis revealed that the 3-D cellulose model was minimally impacted compared to the simple substratum model. This study highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-kingdom components, as these impact penetration and efficacy of topical antiseptics.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , Modelos Biológicos , Pseudomonas aeruginosa/fisiologia , Staphylococcus aureus/fisiologia , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/uso terapêutico , Biofilmes/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
9.
Adv Exp Med Biol ; 931: 1-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27271678

RESUMO

The biofilm phenotype of Aspergillus species is an important and accepted clinical entity. While industrially these biofilms have been used extensively in important biofermentations, their role in clinical infection is less well defined. A recent flurry of activity has demonstrated that these interesting filamentous moulds have the capacity to form biofilms both in vitro and in vivo, and through various investigations have shown that these are exquisitely resistant to antifungal therapies through a range of adaptive resistance mechanisms independent of defined genetic changes. This review will explore the clinical importance of these biofilms and provide contemporary information with respect to their clinical management.


Assuntos
Aspergilose/microbiologia , Aspergillus/fisiologia , Biofilmes , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Biofilmes/efeitos dos fármacos , Humanos
10.
Mycopathologia ; 181(1-2): 83-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26378025

RESUMO

A fungus was isolated from a nail of a 54-year-old female patient with onychomycosis in Taiwan. Based on ITS rDNA as well as beta tubulin gene sequences and microscopic analyses, this fungus was identified as Exophiala oligosperma. This is the first record of E. oligosperma in Taiwan. Negative keratin azure test indicates that keratin degradation is not involved in cases of E. oligosperma associated with skin and nail diseases.


Assuntos
Exophiala/classificação , Exophiala/isolamento & purificação , Onicomicose/epidemiologia , Onicomicose/microbiologia , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Exophiala/genética , Feminino , Humanos , Técnicas Microbiológicas , Microscopia , Pessoa de Meia-Idade , Taiwan/epidemiologia , Tubulina (Proteína)/genética
11.
Med Mycol ; 53(7): 645-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162475

RESUMO

In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19-38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis.


Assuntos
Aspergillus fumigatus/crescimento & desenvolvimento , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Metaloendopeptidases/biossíntese , Metaloendopeptidases/metabolismo , Interações Microbianas , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Aspergilose/microbiologia , Aspergillus fumigatus/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Criança , Pré-Escolar , Meios de Cultura/química , Fibrose Cística/complicações , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Perfilação da Expressão Gênica , Humanos , Espectrometria de Massas , Técnicas Microbiológicas , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação
12.
BMC Microbiol ; 14: 303, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25476750

RESUMO

BACKGROUND: Biofilm formation by Candida albicans has shown to be highly variable and is directly associated with pathogenicity and poor clinical outcomes in patients at risk. The aim of this study was to test the hypotheses that the extracellular DNA release by C. albicans is strain dependent and is associated with biofilm heterogeneity. RESULTS: Initially, biofilm formed by C. albicans high biofilm formers (HBF) or low biofilm formers (LBF) were treated with DNase to find whether eDNA play a role in their biofilm formation. Digestion of biofilm eDNA significantly reduced the HBF biofilm biomass by five fold compared to untreated controls. In addition, quantification of eDNA over the period of biofilm formation by SYBR green assay demonstrate a significantly higher level of 2 to 6 fold in HBF compared to LBF. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase genes, a marker of autolysis, were upregulated in 24 h biofilm formation by HBF compared to LBF, indicating autolysis pathway possibly involved in causing variation. The biofilm biomass and eDNA release by single (∆cht2, ∆cht3) and double knockout (∆cht2/∆cht3) chitinase mutants were significantly less compared to their parental strain CA14, confirming the role of chitinases in eDNA release and biofilm formation. Correlation analysis found a positive correlation between chitinases and HWP1, suggesting eDNA may release during the hyphal growth. Finally, we showed a combinational treatment of biofilms with DNase or chitinase inhibitor (acetazolamide) plus amphotericin B significantly improved antifungal susceptibility by 2 to 8 fold. CONCLUSIONS: Collectively, these data show that eDNA release by C. albicans clinical isolates is variable and is associated with differential biofilm formation. Digestion of biofilm eDNA by DNase may provide a novel therapeutic strategies to destabilise biofilm growth and improves antifungal sensitivity.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/fisiologia , DNA Fúngico/metabolismo , Candida albicans/genética , Quitinases/biossíntese , Quitinases/genética , Perfilação da Expressão Gênica , Humanos , RNA Mensageiro/análise
13.
BMC Microbiol ; 14: 182, 2014 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-24996549

RESUMO

BACKGROUND: Candida albicans infections have become increasingly recognised as being biofilm related. Recent studies have shown that there is a relationship between biofilm formation and poor clinical outcomes in patients infected with biofilm proficient strains. Here we have investigated a panel of clinical isolates in an attempt to evaluate their phenotypic and transcriptional properties in an attempt to differentiate and define levels of biofilm formation. RESULTS: Biofilm formation was shown to be heterogeneous; with isolates being defined as either high or low biofilm formers (LBF and HBF) based on different biomass quantification. These categories could also be differentiated using a cell surface hydrophobicity assay with 24 h biofilms. HBF isolates were more resistance to amphotericin B (AMB) treatment than LBF, but not voriconazole (VRZ). In a Galleria mellonella model of infection HBF mortality was significantly increased in comparison to LBF. Histological analysis of the HBF showed hyphal elements intertwined indicative of the biofilm phenotype. Transcriptional analysis of 23 genes implicated in biofilm formation showed no significant differential expression profiles between LBF and HBF, except for Cdr1 at 4 and 24 h. Cluster analysis showed similar patterns of expression for different functional classes of genes, though correlation analysis of the 4 h biofilms with overall biomass at 24 h showed that 7 genes were correlated with high levels of biofilm, including Als3, Eap1, Cph1, Sap5, Plb1, Cdr1 and Zap1. CONCLUSIONS: Our findings show that biofilm formation is variable amongst C. albicans isolates, and categorising isolates depending on this can be used to predict how pathogenic the isolate will behave clinically. We have shown that looking at individual genes in less informative than looking at multiple genes when trying to categorise isolates at LBF or HBF. These findings are important when developing biofilm-specific diagnostics as these could be used to predict how best to treat patients infected with C. albicans. Further studies are required to evaluate this clinically.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida albicans/genética , Candida albicans/fisiologia , Variação Genética , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Bioensaio , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Candidemia/microbiologia , Farmacorresistência Fúngica , Perfilação da Expressão Gênica , Humanos , Lepidópteros/microbiologia , Pirimidinas/farmacologia , Análise de Sobrevida , Triazóis/farmacologia , Virulência , Voriconazol
14.
Eukaryot Cell ; 12(3): 420-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23314962

RESUMO

Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 < 12 < 24 < 48 h). Random amplification of polymorphic DNA (RAPD) PCR showed that eDNA was identical to genomic DNA. Biofilm architectural integrity was destabilized by DNase treatment. Biochemical and transcriptional analyses showed that chitinase activity and mRNA levels of chitinase, a marker of autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy.


Assuntos
Aspergillus fumigatus/metabolismo , Biofilmes/efeitos dos fármacos , DNA Fúngico/metabolismo , Farmacorresistência Fúngica , Matriz Extracelular/metabolismo , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Autólise , Biofilmes/crescimento & desenvolvimento , Caspofungina , Quitinases/genética , Quitinases/metabolismo , Desoxirribonucleases/farmacologia , Equinocandinas/farmacologia , Genoma Fúngico , Lipopeptídeos , Transcrição Gênica , Regulação para Cima
15.
J Antimicrob Chemother ; 68(7): 1486-96, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23580559

RESUMO

OBJECTIVES: Recent increases in triazole resistance in Aspergillus fumigatus have been attributed primarily to target site (cyp51A) mutations. A recent survey of resistant isolates in Manchester showed that >50% of resistant isolates had no mutation in cyp51A or its promoter. We investigated the mechanisms of resistance in clinical azole-resistant isolates without cyp51A mutations. METHODS: Twelve azole-resistant isolates, 10 of which were itraconazole resistant, were studied. Bioinformatic comparisons between Candida albicans efflux genes and A. fumigatus genome data identified 20 putative azole transporter genes. Basal and azole-induced expression of these genes and cyp51A was quantified using RT-PCR with comparison with clinical azole-susceptible isolates. Function of high basal or itraconazole-induced expression transporters was tested by gene knockout in azole-susceptible and azole-resistant isolates. RESULTS: All susceptible strains showed minimal basal expression of cdr1B compared with 8 of 10 azole-resistant strains with high basal expression of this gene (>5-fold), 3 of which showed >30-fold increased expression. Knockout of this gene resulted in a 4-fold reduction in itraconazole, posaconazole and voriconazole MICs for a susceptible clinical isolate and a 4-fold reduction in itraconazole susceptibility in a clinical resistant isolate. One strain showed a >500-fold induction of cyp51A. No increase in basal expression or expression after induction was seen for the 18 remaining putative transporters. CONCLUSIONS: The reasons behind the shift away from target site mutation in azole-resistant isolates from Manchester are unknown. The modest change in expression of cdr1B in azole-susceptible strains implies that only study of resistant isolates will lead to further understanding of resistance mechanisms in A. fumigatus.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica , Proteínas Fúngicas/metabolismo , Itraconazol/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Adolescente , Adulto , Idoso , Aspergilose/microbiologia , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Criança , Feminino , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reino Unido
16.
PLoS Pathog ; 7(9): e1002257, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21931556

RESUMO

Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections.


Assuntos
Aspergillus fumigatus/genética , Biofilmes/efeitos dos fármacos , Candida albicans/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Azóis/farmacologia , Biofilmes/crescimento & desenvolvimento , Calcineurina/genética , Calcineurina/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Farmacorresistência Fúngica/genética , Equinocandinas/metabolismo , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Microscopia Confocal , Microscopia Eletrônica de Varredura
17.
Artigo em Inglês | MEDLINE | ID: mdl-36943565

RESUMO

Among different types of semiconductor photocatalysts, MoS2 hybridized with graphitic carbon heterojunction has developed the most promising "celebrity" due to its static chemical properties, suitable band structure, and facile synthesis. Physiochemical and surface characterizations were revealed with structural, electronic, and optical analysis. Diffused reflectance spectroscopy evidenced the energy band gap tailoring from 2.62 eV for pure g-C3N4 and 1.68 eV for MoS2 to 2.12 eV for the hybridized heterojunction nanocomposite. Effective electron/hole pair separation, rise in redox species, and great utilization of solar range because of band gap modifying leading to greater degradation efficacy of g-C3N4/MoS2 heterojunction. The photocatalytic degradation with MoS2/g-C3N4 heterojunction catalyst to remove methylene blue dye was remarkably enriched and much higher than g-C3N4. By carefully examining the stimulus aspects, a probable mechanism is suggested, assuming that the concurring influence of MoS2 and g-C3N4, the lesser crystallite size, and more solubility in aquatic solution furnish the efficient e--h+ pair separation and tremendous photocatalytic degradation activity. This work delivers a novel idea to improve the efficient MoS2/g-C3N4 heterojunction for improved photocatalytic degradation in environmental refinement.

18.
Biofilm ; 5: 100112, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36969800

RESUMO

Candida albicans is the most prevalent and notorious of the Candida species involved in bloodstream infections, which is characterised by its capacity to form robust biofilms. Biofilm formation is an important clinical entity shown to be highly variable among clinical isolates. There are various environmental and physiological factors, including nutrient availability which influence the phenotype of Candida species. However, mechanisms underpinning adaptive biofilm heterogeneity have not yet been fully explored. Within this study we have profiled previously characterised and phenotypically distinct C. albicans bloodstream isolates. We assessed the dynamic susceptibility of these differing populations to antifungal treatments using population analysis profiling in addition to assessing biofilm formation and morphological changes. High throughput methodologies of RNA-Seq and LC-MS were employed to map and integrate the transcriptional and metabolic reprogramming undertaken by heterogenous C. albicans isolates in response to biofilm and hyphal inducing serum. We found a significant relationship between biofilm heterogeneity and azole resistance (P < 0.05). In addition, we observed that in response to serum our low biofilm forming (LBF) C. albicans exhibited a significant increase in biofilm formation and hyphal elongation. The transcriptional reprogramming of LBF strains compared to high biofilm forming (HBF) was distinct, indicating a high level of plasticity and variation in stress responses by heterogenous strains. The metabolic responses, although variable between LBF and HBF, shared many of the same responses to serum. Notably, a high upregulation of the arachidonic acid cascade, part of the COX pathway, was observed and this pathway was found to induce biofilm formation in LBF 3-fold. C. albicans is a highly heterogenous bloodstream pathogen with clinical isolates varying in antifungal tolerance and biofilm formation. In addition to this, C. albicans is capable of highly complex and variable regulation of transcription and metabolic pathways and heterogeneity across isolates further increases the complexity of these pathways. Here we have shown with a dual and integrated approach, the importance of studying a diverse panel of C. albicans isolates, which has the potential to reveal distinct pathways that can harnessed for drug discovery.

19.
Antimicrob Agents Chemother ; 56(3): 1599-601, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22183174

RESUMO

In cystic fibrosis patients, chronic lung infection with Pseudomonas aeruginosa and the associated decline in lung function are the major cause of mortality. In this report, we show that pyocin S2 displays potent activity against P. aeruginosa biofilms, thus representing a potentially improved therapeutic option. Using an invertebrate model of P. aeruginosa infection, we also show that pyocin S2 is highly active in vivo.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Mariposas/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Piocinas/farmacologia , Escarro/microbiologia , Animais , Aztreonam/farmacologia , Biofilmes/crescimento & desenvolvimento , Criança , Fibrose Cística/microbiologia , Humanos , Larva/efeitos dos fármacos , Larva/microbiologia , Larva/fisiologia , Pulmão/microbiologia , Microscopia Eletrônica de Varredura , Mariposas/microbiologia , Mariposas/fisiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Tobramicina/farmacologia
20.
Antimicrob Agents Chemother ; 55(5): 2092-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21321135

RESUMO

This study investigated the phase-dependent expression and activity of efflux pumps in Aspergillus fumigatus treated with voriconazole. Fourteen strains were shown to become increasingly resistant in the 12-h (16- to 128-fold) and 24-h (>512-fold) phases compared to 8-h germlings. An Ala-Nap uptake assay demonstrated a significant increase in efflux pump activity in the 12-h and 24-h phases (P<0.0001). The efflux pump activity of the 8-h germling cells was also significantly induced by voriconazole (P<0.001) after 24 h of treatment. Inhibition of efflux pump activity with the competitive substrate MC-207,110 reduced the voriconazole MIC values for the A. fumigatus germling cells by 2- to 8-fold. Quantitative expression analysis of AfuMDR4 mRNA transcripts showed a phase-dependent increase as the mycelial complexity increased, which was coincidental with a strain-dependent increase in azole resistance. Voriconazole also significantly induced this in a time-dependent manner (P<0.001). Finally, an in vivo mouse biofilm model was used to evaluate efflux pump expression, and it was shown that AfuMDR4 was constitutively expressed and significantly induced by treatment with voriconazole after 24 h (P<0.01). Our results demonstrate that efflux pumps are expressed in complex A. fumigatus biofilm populations and that this contributes to azole resistance. Moreover, voriconazole treatment induces efflux pump expression. Collectively, these data may provide evidence for azole treatment failures in clinical cases of aspergillosis.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Azóis/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Voriconazol
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa