Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39408702

RESUMO

Antidepressant response is a multifactorial process related to biological and environmental factors, where brain-derived neurotrophic factor (BDNF) may play an important role in modulating depressive and anxious symptoms. We aimed to analyze how BDNF impacts antidepressant response, considering the levels of anxiety. METHODS: A total of 40 depressed adults were included. We evaluated initial serum BDNF, anxiety through the State-Trait Anxiety Inventory (STAI), and the severity of depressive symptoms by the Hamilton Depression Rating Scale (HDRS). Participants received antidepressant treatment for 8 weeks, and response to treatment was evaluated according to the final HDRS scores. RESULTS: Basal BDNF was higher in responders compared to non-responder depressed patients, in addition to being inversely associated with the severity of anxiety and depression. CONCLUSIONS: Baseline BDNF serum is an adequate predictive factor for response to antidepressant treatment with SSRI, with lower pre-treatment levels of BDNF associated with higher anxiety symptoms after treatment. Stress levels could influence the response to treatment, but its association was not conclusive.


Assuntos
Antidepressivos , Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Humanos , Fator Neurotrófico Derivado do Encéfalo/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/sangue , Depressão/tratamento farmacológico , Depressão/sangue , Estresse Psicológico/tratamento farmacológico , Resultado do Tratamento , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
2.
Int J Mol Sci ; 24(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37686181

RESUMO

Melatonin is a hormone synthesized by the pineal gland with neuroprotective and neurodevelopmental effects. Also, melatonin acts as an antidepressant by modulating the generation of new neurons in the dentate gyrus of the hippocampus. The positive effects of melatonin on behavior and neural development may suggest it is used for reverting stress but also for the alterations produced by chemotherapeutic drugs influencing behavior and brain plasticity. In this sense, temozolomide, an alkylating/anti-proliferating agent used in treating brain cancer, is associated with decreased cognitive functions and depression. We hypothesized that melatonin might prevent the effects of temozolomide on depression- and anxiety-like behavior by modulating some aspects of the neurogenic process in adult Balb/C mice. Mice were treated with temozolomide (25 mg/kg) for three days of two weeks, followed by melatonin (8 mg/kg) for fourteen days. Temozolomide produced short- and long-term decrements in cell proliferation (Ki67-positive cells: 54.89% and 53.38%, respectively) and intermediate stages of the neurogenic process (doublecortin-positive cells: 68.23% and 50.08%, respectively). However, melatonin prevented the long-term effects of temozolomide with the increased number of doublecortin-positive cells (47.21%) and the immunoreactivity of 2' 3'-Cyclic-nucleotide-3 phosphodiesterase (CNPase: 82.66%), an enzyme expressed by mature oligodendrocytes, in the hilar portion of the dentate gyrus. The effects of melatonin in the temozolomide group occurred with decreased immobility in the forced swim test (45.55%) but not anxiety-like behavior. Thus, our results suggest that melatonin prevents the harmful effects of temozolomide by modulating doublecortin cells, hilar oligodendrocytes, and depression-like behavior tested in the forced swim test. Our study could point out melatonin's beneficial effects for counteracting temozolomide's side effects.


Assuntos
Depressão , Melatonina , Animais , Camundongos , 2',3'-Nucleotídeo Cíclico 3'-Fosfodiesterase , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Proteínas do Domínio Duplacortina , Melatonina/farmacologia , Camundongos Endogâmicos BALB C , Neurônios , Temozolomida/efeitos adversos , Temozolomida/farmacologia
3.
Neurochem Res ; 47(3): 781-794, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34978003

RESUMO

Environmental enrichment induces behavioral and structural modifications in rodents and influences the capability of mice to cope with stress. However, little is understood about hippocampal neurogenesis and the appearance of social/agonistic (aggressive) behavior upon activation of different neuronal circuits in FVB/N mice. Thus, in this study we hypothesized that environmental enrichment differentially regulates neurogenesis, neural circuit activation and social/agonistic behavior in male and female FVB/N mice. We explored the (1) neurogenic process as an indicative of neuroplasticity, (2) neuronal activation in the limbic system, and (3) social behavior using the resident-intruder test. On postnatal day 23 (PD23), mice were assigned to one of two groups: Standard Housing or Environmental Enrichment. At PD53, rodents underwent the resident-intruder test to evaluate social behaviors. Results revealed that environmental enrichment increased neurogenesis and social interaction in females. In males, environmental enrichment increased neurogenesis and agonistic behavior. Enriched male mice expressed higher levels of agonistic-related behavior than female mice housed under the same conditions. Neural circuit analysis showed lower activation in the amygdala of enriched males and higher activation in enriched females than their respective controls. Enriched females also showed higher activation in the frontal cortex without differences in male groups. Moreover, the insular cortex was less activated in females than in males. Thus, our results indicate that environmental enrichment has different effects on neuroplasticity and social/agonistic behavior in FVB/N mice, suggesting the relevance of sexual dimorphism in response to environmental stimuli.


Assuntos
Comportamento Agonístico , Interação Social , Agressão/fisiologia , Comportamento Agonístico/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos , Comportamento Social
4.
BMC Psychiatry ; 22(1): 295, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468768

RESUMO

BACKGROUND: The concept of environmental enrichment (EE) encompasses complex physical, social, cognitive, motor, and somatosensory stimuli to which individuals are differentially exposed. An indicator of EE comprising these elements would facilitate the study of the impact of EE in diverse clinical settings by allowing an easy and comparable measurement. This study aimed to create and test such an EE indicator based on the Florida Cognitive Activities Scale (FCAS), the Multidimensional Social Integration in Later Life Scale (SILLS), and the International Physical Activity Questionnaire (IPAQ). METHODS: Participants with major depression and control subjects were recruited in this cross-sectional comparative study. Depressive symptom severity was assessed with the Hamilton Depression Rating Scale (HAM-D). The EE indicator was used to evaluate cognitive, social, and physical activity. We divided the sample into three levels of cognitive and social activities to construct an EE indicator and compared the obtained scores between participants with major depression and control subjects. RESULTS: 40 patients suffering from major depression and 50 control subjects were included. Higher HAM-D scores were associated with lower EE levels. Cognitive and social items exhibited adequate reliability. Control subjects reported higher scores in all three activities evaluated, except for some items of physical activities. This indicator of EE clearly differentiated between participants with major depression from control subjects. CONCLUSIONS: FCAS, SILLS, and IPAQ used together are valid to evaluate EE. This EE indicator may be a useful tool during clinical practice. The cross-sectional design and the small sample size are limitations of the present study.


Assuntos
Transtorno Depressivo Maior , Cognição , Estudos Transversais , Transtorno Depressivo Maior/diagnóstico , Humanos , Reprodutibilidade dos Testes
5.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681636

RESUMO

Depression is a neuropsychiatric disorder with a high impact on the worldwide population. To overcome depression, antidepressant drugs are the first line of treatment. However, pre-clinical studies have pointed out that antidepressants are not entirely efficacious and that the quality of the living environment after stress cessation may play a relevant role in increasing their efficacy. As it is unknown whether a short daily exposure to environmental enrichment during chronic stress and antidepressant treatment will be more effective than just the pharmacological treatment, this study analyzed the effects of fluoxetine, environmental enrichment, and their combination on depressive-associated behavior. Additionally, we investigated hippocampal neurogenesis in mice exposed to chronic mild stress. Our results indicate that fluoxetine reversed anhedonia. Besides, fluoxetine reversed the decrement of some events of the hippocampal neurogenic process caused by chronic mild stress. Conversely, short daily exposure to environmental enrichment changed the deterioration of the coat and anhedonia. Although, this environmental intervention did not produce significant changes in the neurogenic process affected by chronic mild stress, fluoxetine plus environmental enrichment showed similar effects to those caused by environmental enrichment to reverse depressive-like behaviors. Like fluoxetine, the combination reversed the declining number of Ki67, doublecortin, calretinin cells and mature newborn neurons. Finally, this study suggests that short daily exposure to environmental enrichment improves the effects of fluoxetine to reverse the deterioration of the coat and anhedonia in chronically stressed mice. In addition, the combination of fluoxetine with environmental enrichment produces more significant effects than those caused by fluoxetine alone on some events of the neurogenic process. Thus, environmental enrichment improves the benefits of pharmacological treatment by mechanisms that need to be clarified.


Assuntos
Anedonia/efeitos dos fármacos , Fluoxetina/farmacologia , Hipocampo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Psicológico/fisiopatologia , Anedonia/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Calbindina 2/metabolismo , Proliferação de Células , Proteína Duplacortina/metabolismo , Meio Ambiente , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estresse Fisiológico
6.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138332

RESUMO

Adult neurogenesis occurs in the dentate gyrus (DG) of the hippocampus. New neurons help to counteract the effects of stress and several interventions including antidepressant drugs, environmental modifications and internal factors act pro-neurogenic with consequences in the dorsal and ventral DG. Melatonin, the main product synthesized by the pineal gland, induces antidepressant-like effects and modulates several events of the neurogenic process. However, the information related to the capability of melatonin to modulate dendrite maturation and complexity in the dorsal and ventral regions of the DG and their correlation with its antidepressant-like effect is absent. Thus, in this study, we analyzed the impact of melatonin (0, 0.5, 1, 2.5, 5 or 10 mg/kg) administered daily for fourteen days on the number, dendrite complexity and distribution of doublecortin (DCX)-cells in the dorsal-ventral regions of the DG in male Balb/C mice. Doublecortin is a microtubule-associated protein that is expressed during the course of dendritic maturation of newborn neurons. Also, we analyzed the impact of melatonin on despair-like behavior in the forced swim test. We first found a significant increase in the number and higher dendrite complexity, mainly with the doses of 2.5, 5 and 10 mg/kg of melatonin (81%, 122%, 78%). These cells showed more complex dendritic trees in the ventral- and the dorsal- DG. Concomitantly, the doses of 5 and 10 mg/kg of melatonin decreased depressant-like behavior (76%, 82%). Finally, the data corroborate the antidepressant-like effect of melatonin and the increasing number of doublecortin-associated cells. Besides, the data indicate that melatonin favors the number and dendrite complexity of DCX-cells in the dorsal- and ventral- region of the DG, which may explain part of the antidepressant-like effect of melatonin.


Assuntos
Antidepressivos/uso terapêutico , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Melatonina/uso terapêutico , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Associadas aos Microtúbulos/metabolismo , Neurogênese/efeitos dos fármacos , Neuropeptídeos/metabolismo
7.
Stem Cells ; 35(3): 787-799, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27790794

RESUMO

We asked whether cell-cycle associated protein p27kip1 might be involved in the transition of precursor cells to postmitotic maturation in adult hippocampal neurogenesis. p27kip1 was expressed throughout the dentate gyrus with a strong nuclear expression in early postmitotic, calretinin-positive neurons and neuronally determined progenitor cells (type-3 and some type-2b), lower or absent expression in radial glia-like precursor cells (type-1) and type-2a cells and essentially no expression in granule cells. This suggested a transitory role in late proliferative and early postmitotic phases of neurogenesis. Inconsistent with a role limited to cell cycle arrest the acute stimuli, voluntary wheel running (RUN), environmental enrichment (ENR) and kainate-induced seizures increased p27kip1 expressing cells. Sequential short-term combination of RUN and ENR yielded more p27kip1 cells than either stimulus alone, indicating an additive effect. In vitro, p27kip1 was lowly expressed by proliferating precursor cells but increased upon differentiation. In p27kip1-/- mice neurogenesis was reduced in vivo, whereas the number of proliferating cells was increased. Accordingly, the microdissected dentate gyrus of p27kip1-/- mice generated more colonies in the neurosphere assay and an increased number of larger spheres with the differentiation potential unchanged. In p27kip1-/- monolayer cultures, proliferation was increased and cell cycle genes were upregulated. In the Morris water maze p27kip1-/- mice learned the task but were specifically impaired in the reversal phase explainable by the decrease in adult neurogenesis. We conclude that p27kip1 is involved in the decisive step around cell-cycle exit and plays an important role in activity-regulated and functionally relevant adult hippocampal neurogenesis. Stem Cells 2017;35:787-799.


Assuntos
Envelhecimento/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Hipocampo/metabolismo , Neurogênese , Animais , Comportamento Animal , Biomarcadores/metabolismo , Diferenciação Celular , Proliferação de Células , Feminino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose , Neurônios/citologia , Neurônios/metabolismo , Fenótipo , Aprendizagem Espacial
8.
Neural Plast ; 2018: 4960869, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951090

RESUMO

Neurogenesis in the hippocampus is influenced by several factors including external stimuli. In addition to their involvement in learning and memory processes, newborn neurons of the dentate gyrus (DG) buffer against the effects of stress. Although the response of these cells to environmental stimuli has been shown, the age of the cells that respond to a brief spatial exploration or a stressful situation produced by forced-swim stress in adult female Balb/C mice is still unknown. Here, we investigated the activation of newborn neurons after three (IdU) or six weeks (CldU) postlabelling with the expression of Arc in the same mice but exposed to different environmental stimuli. Mice housed in standard conditions showed an increase in the activation of CldU-labelled cells after two exposures to a brief spatial exploration but no increase in the activation of IdU-labelled cells compared with the control group. Additionally, we analysed neuronal activation in the DG of mice housed in standard conditions and further exposed to forced-swim stress. We found a decreased activation of IdU-labelled cells in mice exposed to forced-swim stress with increase number of CldU-labelled cells. Our results suggest that based on their time postlabelling, newly generated hippocampal neurons show a different response to several environmental stimuli.


Assuntos
Giro Denteado/fisiologia , Comportamento Exploratório , Neurogênese , Neurônios/fisiologia , Comportamento Espacial , Estresse Psicológico , Animais , Proteínas do Citoesqueleto/metabolismo , Giro Denteado/metabolismo , Feminino , Camundongos Endogâmicos BALB C , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Natação
9.
Neural Plast ; 2018: 8205245, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627149

RESUMO

Several interventions have been shown to counteract the effects of stress that may be related to improved neuroplasticity and neuronal activation. In this sense, environmental enrichment (ENR) protects against acute stress and increases neuroplasticity. It has been suggested that the use of patterned auditory stimuli (PAS) may be beneficial in increasing the effectiveness of ENR on disorders related to stress, such as depression and anxiety. Examples of PAS are classical music compositions that have interesting effects at both clinical and preclinical levels. Thus, we analyzed the effects of the exposure to PAS, represented in this study by Mozart's compositions, during ENR housing for 35 days in adult male Balb/C mice to evaluate depression-associated behavior using the forced-swim test (FST) paradigm with an additional short exposure to PAS. We found that the ENR mice that were exposed to PAS during both housing and behavioral task (ENR + PAS/FST + PAS) show decreased immobility and the number of despair episodes within a higher latency to show the first bout of immobility. Additionally, we found increased neuronal activation evaluated by the identification of activity-regulated cytoskeleton-associated protein- (Arc-) labeled cells in the prefrontal cortex (PFC) in mice exposed to PAS during housing and in the absence or presence of PAS during FST. Moreover, we found increased neuronal activation in the auditory cortex (AuCx) of mice exposed to PAS during FST. Our study suggests that the exposure to PAS during an emotional challenge decreases despair-like behavior in rodents that were previously housed in an enriched environment in combination with auditory stimuli. Thus, our data indicate that the role of the exposure to PAS as an intervention or in combination with positive environment to aid in treating neuropsychiatric disorders is worth pursuing.


Assuntos
Estimulação Acústica/métodos , Depressão , Abrigo para Animais , Estresse Fisiológico/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Corticosterona/sangue , Meio Ambiente , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios/fisiologia , Estresse Psicológico/psicologia , Natação
10.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-30585191

RESUMO

Melatonin, the main product synthesized by the pineal gland, acts as a regulator of the generation of new neurons in the dentate gyrus (DG). Newborn neurons buffer the deleterious effects of stress and are involved in learning and memory processes. Furthermore, melatonin, through the regulation of the cytoskeleton, favors dendrite maturation of newborn neurons. Moreover, newborn neurons send their axons via the mossy fiber tract to Cornu Ammonis 3 (CA3) region to form synapses with pyramidal neurons. Thus, axons of newborn cells contribute to the mossy fiber projection and their plasticity correlates with better performance in several behavioral tasks. Thus, in this study, we analyzed the impact of exogenous melatonin (8 mg/kg) administered daily for one- or six-months on the structural plasticity of infrapyramidal- and suprapyramidal mossy fiber projection of granule cells in the DG in male Balb/C mice. We analyzed the mossy fiber projection through the staining of calbindin, that is a calcium-binding protein localized in dendrites and axons. We first found an increase in the number of calbindin-positive cells in the granular cell layer in the DG (11%, 33%) after treatment. Futhermore, we found an increase in the volume of suprapyramidal (>135%, 59%) and infrapyramidal (>128%, 36%) mossy fiber projection of granule neurons in the DG after treatment. We also found an increase in the volume of CA3 region (>146%, 33%) after treatment, suggesting that melatonin modulates the structural plasticity of the mossy fiber projection to establish functional synapses in the hippocampus. Together, the data suggest that, in addition to the previously reported effects of melatonin on the generation of new neurons and its antidepressant like effects, melatonin also modulates the structural plasticity of axons in granule cells in the DG.


Assuntos
Axônios/metabolismo , Giro Denteado/metabolismo , Melatonina/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Calbindinas/metabolismo , Giro Denteado/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia
11.
Stem Cells ; 34(3): 674-84, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26840599

RESUMO

In much animal research, genetic variation is rather avoided than used as a powerful tool to identify key regulatory genes in complex phenotypes. Adult hippocampal neurogenesis is one such highly complex polygenic trait, for which the understanding of the molecular basis is fragmented and incomplete, and for which novel genetic approaches are needed. In this study, we aimed at marrying the power of the BXD panel, a mouse genetic reference population, with the flexibility of a cell culture model of adult neural precursor proliferation and differentiation. We established adult-derived hippocampal precursor cell cultures from 20 strains of the BXD panel, including the parental strains C57BL/6J and DBA/2J. The rates of cell proliferation and neuronal differentiation were measured, and transcriptional profiles were obtained from proliferating cultures. Together with the published genotypes of all lines, these data allowed a novel systems genetics analysis combining quantitative trait locus analysis with transcript expression correlation at a cellular level to identify genes linked with the differences in proliferation. In a proof-of-principle analysis, we identified Lrp6, the gene encoding the coreceptor to Frizzled in the Wnt pathway, as a potential negative regulator of precursor proliferation. Overexpression and siRNA silencing confirmed the regulatory role of Lrp6. As well as adding to our knowledge of the pathway surrounding Wnt in adult hippocampal neurogenesis, this finding allows the new appreciation of a negative regulator within this system. In addition, the resource and associated methodology will allow the integration of regulatory mechanisms at a systems level.


Assuntos
Diferenciação Celular/genética , Hipocampo/citologia , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/biossíntese , Neurogênese/genética , Neurônios/citologia , Animais , Técnicas de Cultura de Células , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos , Neurônios/metabolismo , RNA Interferente Pequeno/genética , Via de Sinalização Wnt/genética
12.
J Neurosci ; 33(13): 5785-96, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23536091

RESUMO

Adult hippocampal neurogenesis is to a large degree controlled at the level of cell survival, and a number of potential mediators of this effect have been postulated. Here, we investigated the small heat shock protein Hspb8, which, because of its pleiotropic prosurvival effects in other systems, was considered a particularly promising candidate factor. Hspb8 is, for example, found in plaques of Alzheimer disease but exerts neuroprotective effects. We found that expression of Hspb8 increased during differentiation in vitro and was particularly associated with later stages (48-96 h) of differentiation. Gain-of-function and loss-of-function experiments supported the hypothesis that Hspb8 regulates cell survival of new neurons in vitro. In the dentate gyrus of adult mice in vivo, lentiviral overexpression of Hspb8 doubled the surviving cells and concomitantly promoted differentiation and net neurogenesis without affecting precursor cell proliferation. We also discovered that the truncated form of the crystallin domain of Hspb8 was sufficient to affect cell survival and neuronal differentiation in vitro and in vivo. Precursor cell experiments in vitro revealed that Hspb8 increases the phosphorylation of Akt and suggested that the prosurvival effect can be produced by a cell-autonomous mechanism. Analysis of hippocampal Hspb8 expression in mice of 69 strains of the recombinant inbred set BXD revealed that Hspb8 is a cis-acting gene whose expression was associated with clusters of transcript enriched in genes linked to growth factor signaling and apoptosis. Our results strongly suggest that Hspb8 and its α-crystallin domain might act as pleiotropic prosurvival factor in the adult hippocampus.


Assuntos
Diferenciação Celular/fisiologia , Giro Denteado/citologia , Proteínas de Choque Térmico Pequenas/metabolismo , Neurogênese/fisiologia , Neurônios/fisiologia , alfa-Cristalinas/metabolismo , Células-Tronco Adultas/fisiologia , Análise de Variância , Animais , Bromodesoxiuridina/metabolismo , Proliferação de Células , Sobrevivência Celular , Biologia Computacional , Feminino , Regulação da Expressão Gênica/fisiologia , Vetores Genéticos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Choque Térmico Pequenas/química , Proteínas de Choque Térmico Pequenas/genética , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , RNA Mensageiro/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Fatores de Tempo , Transfecção , alfa-Cristalinas/genética
13.
J Pineal Res ; 56(4): 450-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24650119

RESUMO

Adult hippocampal neurogenesis is affected in some neuropsychiatric disorders such as depression. Numerous evidence indicates that plasma levels of melatonin are decreased in depressed patients. Also, melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behavior. In addition, antidepressants revert alterations of hippocampal neurogenesis present in models of depression following a similar time course to the improvement of behavior. In this study, we analyzed the effects of both, citalopram, a widely used antidepressant, and melatonin in the Porsolt forced swim test. In addition, we investigated the potential antidepressant role of the combination of melatonin and citalopram (MLTCITAL), its type of pharmacological interaction on depressive behavior, and its effect on hippocampal neurogenesis. Here, we found decreased immobility behavior in mice treated with melatonin (<14-33%) and citalopram (<17-30%). Additionally, the MLTCITAL combination also decreased immobility (<22-35%) in comparison with control mice, reflecting an antidepressant-like effect after 14 days of treatment. Moreover, MLTCITAL decreased plasma corticosterone levels (≤13%) and increased cell proliferation (>29%), survival (>39%), and the absolute number of -associated new neurons (>53%) in the dentate gyrus of the hippocampus. These results indicate that the MLTCITAL combination exerts synergism to induce an antidepressant-like action that could be related to the modulation of adult hippocampal neurogenesis. This outcome opens the opportunity of using melatonin to promote behavioral benefits and hippocampal neurogenesis in depression and also supports the use of the MLTCITAL combination as an alternative to treat depression.


Assuntos
Antidepressivos de Segunda Geração/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Citalopram , Depressão , Hipocampo/metabolismo , Melatonina , Neurogênese/efeitos dos fármacos , Animais , Citalopram/agonistas , Citalopram/farmacologia , Depressão/tratamento farmacológico , Depressão/patologia , Depressão/fisiopatologia , Sinergismo Farmacológico , Hipocampo/patologia , Masculino , Melatonina/agonistas , Melatonina/farmacologia , Camundongos , Camundongos Endogâmicos BALB C
14.
Cells ; 13(20)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39451236

RESUMO

The insular cortex (IC) is a brain region that both receives relevant sensory information and is responsible for emotional and cognitive processes, allowing the perception of sensory information. The IC has connections with multiple sites of the pain matrix, including cortico-cortical interactions with the anterior cingulate cortex (ACC) and top-down connections with sites of descending pain inhibition. We explored the changes in the extracellular release of serotonin (5HT) and its major metabolite, 5-hydroxyindoleacetic acid (5HIAA), after inflammation was induced by carrageenan injection. Additionally, we explored the role of 5HT receptors (the 5HT1A, 5HT2A, and 5HT3 receptors) in the IC after inflammatory insult. The results showed an increase in the extracellular levels of 5HT and 5-HIAA during the inflammatory process compared to physiological levels. Additionally, the 5HT1A receptor was overexpressed. Finally, the 5HT1A, 5HT2A, and 5HT3 receptor blockade in the IC had antinociceptive effects. Our results highlight the role of serotonergic neurotransmission in long-lasting inflammatory nociception within the IC.


Assuntos
Córtex Insular , Nociceptividade , Serotonina , Animais , Serotonina/metabolismo , Nociceptividade/efeitos dos fármacos , Masculino , Córtex Insular/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Receptores de Serotonina/metabolismo , Ácido Hidroxi-Indolacético/metabolismo , Ratos Wistar , Carragenina/farmacologia , Ratos
15.
Front Psychiatry ; 15: 1283406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654728

RESUMO

Background: Discovering biological markers is essential for understanding and treating mental disorders. Despite the limitations of current non-invasive methods, neural progenitor cells from the olfactory epithelium (hNPCs-OE) have been emphasized as potential biomarker sources. This study measured soluble factors in these cells in Major Depressive Disorder (MDD), Borderline Personality Disorder (BPD), and healthy controls (HC). Methods: We assessed thirty-five participants divided into MDD (n=14), BPD (n=14), and HC (n=7). MDD was assessed using the Hamilton Depression Rating Scale. BPD was evaluated using the DSM-5 criteria and the Structured Clinical Interview for Personality Disorders. We isolated hNPCs-OE, collected intracellular proteins and conditioned medium, and quantified markers and soluble factors, including Interleukin-6, interleukin-8, and others. Analysis was conducted using one-way ANOVA or Kruskal-Wallis test and linear regression. Results: We found that hNPCs-OE of MDD and BPD decreased Sox2 and laminin receptor-67 kDa levels. MASH-1 decreased in BPD, while tubulin beta-III decreased in MDD compared to controls and BPD. Also, we found significant differences in IL-6, IL-8, MCP-1, and thrombospondin-1 levels between controls and MDD, or BPD, but not between MDD and BPD. Conclusions: Altered protein markers are evident in the nhNPCs-OE in MDD and BPD patients. These cells also secrete higher concentrations of inflammatory cytokines than HC cells. The results suggest the potential utility of hNPCs-OE as an in vitro model for researching biological protein markers in psychiatric disorders. However, more extensive validation studies are needed to confirm their effectiveness and specificity in neuropsychiatric disorders.

16.
Cells ; 12(16)2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37626872

RESUMO

Depression is the most common affective disorder worldwide, accounting for 4.4% of the global population, a figure that could increase in the coming decades. In depression, there exists a reduction in the availability of dendritic spines in the frontal cortex (FC) and hippocampus (Hp). In addition, histone modification and DNA methylation are also dysregulated epigenetic mechanisms in depression. Repetitive transcranial magnetic stimulation (rTMS) is a technique that is used to treat depression. However, the epigenetic mechanisms of its therapeutic effect are still not known. Therefore, in this study, we evaluated the antidepressant effect of 5 Hz rTMS and examined its effect on dendritic remodeling, immunoreactivity of synapse proteins, histone modification, and DNA methylation in the FC and Hp in a model of chronic mild stress. Our data indicated that stress generated depressive-like behaviors and that rTMS reverses this effect, romotes the formation of dendritic spines, and favors the presynaptic connection in the FC and DG (dentate gyrus), in addition to increasing histone H3 trimethylation and DNA methylation. These results suggest that the antidepressant effect of rTMS is associated with dendritic remodeling, which is probably regulated by epigenetic mechanisms. These data are a first approximation of the impact of rTMS at the epigenetic level in the context of depression. Therefore, it is necessary to analyze in future studies as to which genes are regulated by these mechanisms, and how they are associated with the neuroplastic modifications promoted by rTMS.


Assuntos
Lobo Frontal , Estimulação Magnética Transcraniana , Hipocampo , Metilação de DNA , Epigênese Genética
17.
Neuropharmacology ; 236: 109567, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209812

RESUMO

Depression is a mood disorder coursing with several behavioral, cellular, and neurochemical alterations. The negative impact of chronic stress may precipitate this neuropsychiatric disorder. Interestingly, downregulation of oligodendrocyte-related genes, abnormal myelin structure, and reduced numbers and density of oligodendrocytes in the limbic system have been identified in patients diagnosed with depression, but also in rodents exposed to chronic mild stress (CMS). Several reports have emphasized the importance of pharmacological or stimulation-related strategies in influencing oligodendrocytes in the hippocampal neurogenic niche. Repetitive transcranial magnetic stimulation (rTMS) has gained attention as an intervention to revert depression. Here, we hypothesized that 5 Hz (Hz) of rTMS or Fluoxetine (Flx) would revert depressive-like behaviors by influencing oligodendrocytes and revert neurogenic alterations caused by CMS in female Swiss Webster mice. Our results showed that 5 Hz rTMS or Flx revert depressive-like behavior. Only rTMS influenced oligodendrocytes by increasing the number of Olig2-positive cells in the hilus of the dentate gyrus and the prefrontal cortex. However, both strategies exerted effects on some events of the hippocampal neurogenic processes, such as cell proliferation (Ki67-positive cells), survival (CldU-positive cells), and intermediate stages (doublecortin-positive cells) along the dorsal-ventral axis of this region. Interestingly, the combination of rTMS-Flx exerted antidepressant-like effects, but the increased number of Olig2-positive cells observed in mice treated only with rTMS was canceled. However, rTMS-Flx exerted a synergistic effect by increasing the number of Ki67-positive cells. It also increased the number of CldU- and doublecortin-positive cells in the dentate gyrus. Our results demonstrate that 5 Hz rTMS has beneficial effects, as it reverted depressive-like behavior by increasing the number of Olig2-positive cells and reverting the decrement in hippocampal neurogenesis in CMS-exposed mice. Nevertheless, the effects of rTMS on other glial cells require further investigation.


Assuntos
Fluoxetina , Estimulação Magnética Transcraniana , Camundongos , Animais , Feminino , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Estimulação Magnética Transcraniana/métodos , Antígeno Ki-67 , Antidepressivos/uso terapêutico , Proteínas do Domínio Duplacortina , Fator de Transcrição 2 de Oligodendrócitos
18.
J Pineal Res ; 52(4): 427-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22257024

RESUMO

Neuropsychiatric disorders are characterized by hippocampus decreased volume and loss of dendrite arborizations in the subiculum and prefrontal cortex. These structural changes are associated with diminished memory performance. Hilar neurons of the hippocampus integrate spatial memory and are lost in dementia. They receive information from dentate gyrus neurons through dendrites, while they send axonal tracts to the CA3 region. Dendrites are complex structures of neurons that receive chemical information from presynaptic and postsynaptic terminals. Melatonin, the main product of the pineal gland, has neuroprotective actions through its free radical-scavenging properties and decreases neuronal apoptosis. Recently, we found that melatonin increases dendrite maturation and complexity in new neurons formed in the dentate gyrus of mice. In addition, in N1E-115 cultured cells, the indole stimulates early stages of neurite formation, a process that is known to antecede dendrite formation and maturation. Thus, in this study, we explored whether melatonin stimulates dendrite formation and complexity in the adult rat hippocampus in organotypic slice cultures, which is a model that preserves the hippocampal circuitry and their tridimensional organizations of connectivity. The effects of melatonin were studied in nonpathological conditions and in the absence of harmful agents. The results showed that the indole at nocturnal concentrations reached in the cerebrospinal fluid stimulates dendritogenesis at formation, growth, and maturation stages. Also, data showed that dendrites formed became competent to form presynaptic specializations. Evidence strongly suggests that melatonin may be useful in the treatment of neuropsychiatric diseases to repair the loss of dendrites and re-establish lost synaptic connections.


Assuntos
Dendritos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Melatonina/farmacologia , Neurogênese/efeitos dos fármacos , Análise de Variância , Animais , Células Cultivadas , Dendritos/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/citologia , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinaptofisina , Proteínas de Transporte Vesicular/metabolismo
19.
Brain Res Bull ; 186: 91-105, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35688304

RESUMO

Adult hippocampal neurogenesis is regulated by several stimuli to promote the creation of a reserve that may facilitate coping with environmental challenges. In this regard, repetitive transcranial magnetic stimulation (rTMS), a neuromodulation therapy, came to our attention because in clinical studies it reverts behavioral and cognitive alterations related to changes in brain plasticity. Some preclinical studies emphasize the need to understand the underlying mechanism of rTMS to induce behavioral modifications. In this study, we investigated the effects of rTMS on cognition, neurogenic-associated modifications, and neuronal activation in the hippocampus of female Swiss Webster mice. We applied 5 Hz of rTMS twice a day for 14 days. Three days later, mice were exposed to the behavioral battery. Then, brains were collected and immunostained for Ki67-positive cells, doublecortin-positive (DCX+)-cells, calbindin, c-Fos and FosB/Delta-FosB in the dentate gyrus. Also, we analyzed mossy fibers and CA3 with calbindin immunostaining. Mice exposed to rTMS exhibited cognitive improvement, an increased number of proliferative cells, DCX cells, DCX cells with complex dendrite morphology, c-Fos and immunoreactivity of FosB/Delta-FosB in the granular cell layer. The volume of the granular cell layer, mossy fibers and CA3 in rTMS mice also increased. Interestingly, cognitive improvement correlated with DCX cells with complex dendrite morphology. Also, those DCX cells and calbindin immunoreactivity correlated with c-Fos in the granular cell layer. Our results suggest that 5 Hz of rTMS applied twice a day modify cell proliferation, doublecortin cells, mossy fibers and enhance cognitive behavior in healthy female Swiss Webster mice.


Assuntos
Neurogênese , Estimulação Magnética Transcraniana , Animais , Calbindinas , Cognição/fisiologia , Proteínas do Domínio Duplacortina , Feminino , Hipocampo , Camundongos , Neurogênese/fisiologia , Proteínas Proto-Oncogênicas c-fos , Estimulação Magnética Transcraniana/métodos
20.
Physiol Behav ; 254: 113878, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35700814

RESUMO

Several factors, including environmental modifications, stimulate neuroplasticity. One type of neuroplasticity consists in the generation of new neurons in the dentate gyrus of the hippocampus. Neurogenesis is modulated by environmental enrichment (ENR, tunnels plus running wheel) and affected by the time of exposure to ENR. Despite the wide use of ENR to stimulate neuroplasticity, the degree to which ENR variations modeled by temporally changing the level of environmental complexity affect hippocampal neurogenesis and anxiety is still unclear. Thus, we investigated the effects of five housing conditions on young adult male Balb/C mice exposed for 42 days. The groups were as follows: standard conditions without ENR, constant ENR complexity, gradual increase of ENR complexity followed by a gradual decrease of ENR complexity, gradual increase of ENR complexity followed by constant ENR complexity, and constant ENR complexity followed by a gradual decrease of ENR complexity. On day 44, mice were exposed to the elevated plus-maze to evaluate anxiety. Further, we analyzed neurogenesis and quantified corticosterone levels. In an additional experiment, we explored the effect of voluntary physical activity on anxiety, neurogenesis, and corticosterone during the variations in ENR complexity. Our results showed that any change in ENR complexity over time reduced anxiety. Also, voluntary physical activity alone or in the context of a complex environment increased doublecortin cell maturation in the granular cell layer of the hippocampus. Finally, our study supports that physical activity acts proneurogenic, whereas any change in environmental complexity decreases anxiety-like behavior. However, the decrease in corticosterone levels elicited by physical activity was lower than the decrease produced by the decrement in environmental complexity.


Assuntos
Corticosterona , Meio Ambiente , Animais , Ansiedade , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurogênese/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa