Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054958

RESUMO

Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis, which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-ß-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.


Assuntos
Oxirredutases do Álcool/antagonistas & inibidores , Antiparasitários/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ivermectina/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ivermectina/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Relação Estrutura-Atividade
2.
Br J Clin Pharmacol ; 90(7): 1711-1727, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38632083

RESUMO

AIMS: The hollow­fibre system for tuberculosis (HFS­TB) is a preclinical model qualified by the European Medicines Agency to underpin the anti­TB drug development process. It can mimic in vivo pharmacokinetic (PK)­pharmacodynamic (PD) attributes of selected antimicrobials, which could feed into in silico models to inform the design of clinical trials. However, historical data and published protocols are insufficient and omit key information to allow experiments to be reproducible. Therefore, in this work, we aim to optimize and standardize various HFS­TB operational procedures. METHODS: First, we characterized bacterial growth dynamics with different types of hollow­fibre cartridges, Mycobacterium tuberculosis strains and media. Second, we mimicked a moxifloxacin PK profile within hollow­fibre cartridges, in order to check drug­fibres compatibility. Lastly, we mimicked the moxifloxacin total plasma PK profile in human after once daily oral dose of 400 mg to assess PK­PD after different sampling methods, strains, cartridge size and bacterial adaptation periods before drug infusion into the system. RESULTS: We found that final bacterial load inside the HFS­TB was contingent on the studied variables. Besides, we demonstrated that drug­fibres compatibility tests are critical preliminary HFS­TB assays, which need to be properly reported. Lastly, we uncovered that the sampling method and bacterial adaptation period before drug infusion significantly impact actual experimental conclusions. CONCLUSION: Our data contribute to the necessary standardization of HFS­TB experiments, draw attention to multiple aspects of this preclinical model that should be considered when reporting novel results and warn about critical parameters in the HFS­TB currently overlooked.


Assuntos
Antituberculosos , Moxifloxacina , Mycobacterium tuberculosis , Moxifloxacina/administração & dosagem , Moxifloxacina/farmacocinética , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Antituberculosos/farmacocinética , Antituberculosos/administração & dosagem , Tuberculose/tratamento farmacológico , Modelos Biológicos , Testes de Sensibilidade Microbiana , Administração Oral
3.
J Biol Chem ; 288(48): 34514-28, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24126912

RESUMO

WhiB-like (Wbl) proteins are well known for their diverse roles in actinobacterial morphogenesis, cell division, virulence, primary and secondary metabolism, and intrinsic antibiotic resistance. Gene disruption experiments showed that three different Actinobacteria (Mycobacterium smegmatis, Streptomyces lividans, and Rhodococcus jostii) each exhibited a different whiB7-dependent resistance profile. Heterologous expression of whiB7 genes showed these resistance profiles reflected the host's repertoire of endogenous whiB7-dependent genes. Transcriptional activation of two resistance genes in the whiB7 regulon, tap (a multidrug transporter) and erm(37) (a ribosomal methyltransferase), required interaction of WhiB7 with their promoters. Furthermore, heterologous expression of tap genes isolated from Mycobacterium species demonstrated that divergencies in drug specificity of homologous structural proteins contribute to the variation of WhiB7-dependent drug resistance. WhiB7 has a specific tryptophan/glycine-rich region and four conserved cysteine residues; it also has a peptide sequence (AT-hook) at its C terminus that binds AT-rich DNA sequence motifs upstream of the promoters it activates. Targeted mutagenesis showed that these motifs were required to provide antibiotic resistance in vivo. Anaerobically purified WhiB7 from S. lividans was dimeric and contained 2.1 ± 0.3 and 2.2 ± 0.3 mol of iron and sulfur, respectively, per protomer (consistent with the presence of a 2Fe-2S cluster). However, the properties of the dimer's absorption spectrum were most consistent with the presence of an oxygen-labile 4Fe-4S cluster, suggesting 50% occupancy. These data provide the first insights into WhiB7 iron-sulfur clusters as they exist in vivo, a major unresolved issue in studies of Wbl proteins.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Proteínas Ferro-Enxofre/genética , Mycobacterium smegmatis/metabolismo , Rhodococcus/metabolismo , Streptomyces lividans/metabolismo , Fatores de Transcrição/genética , Actinobacteria , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Proteínas Ferro-Enxofre/metabolismo , Metiltransferases/metabolismo , Mutagênese , Mycobacterium smegmatis/genética , Rhodococcus/genética , Especificidade da Espécie , Streptomyces lividans/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
4.
Global Health ; 10: 27, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24735677

RESUMO

BACKGROUND: The grand challenges approach aims to spark innovative and transformative strategies to overcome barriers to significant global health issues. Grand Challenges Canada endorses an 'Integrated Innovation™' approach that focuses on the intersection of scientific/technological, social and business innovation. In this article we explore themes emerging from a dialogue between the authors, who are multidisciplinary recipients of the 'Rising Stars in Global Health' award from Grand Challenges Canada, regarding benefits of engaging in integrated innovation research, and recommendations for how this approach may develop in the future. DISCUSSION: Our dialogue followed a semi-structured interview format that addressed three topics: 1) reflections on applying an Integrated Innovation™ approach for global health; 2) thoughts on participation in the Grand Challenges 2012 meeting; and 3) authors' visions of Grand Challenges Canada and the Grand Challenge movement towards 2020. The dialogue was transcribed verbatim and we used thematic analysis techniques to identify, analyze and report themes in the data. Benefits of working using the Grand Challenges approach centered on two themes: a) the potential for scientific breakthrough and b) building interdisciplinary collaborations and a community of scholars. Challenges and opportunities for Grand Challenges in moving forward included: a) capacity building, particularly regarding Integrated Innovation™ and scale-up planning; b) interdisciplinary and international mentorship for new investigators; and c) potential for future commercialization. CONCLUSIONS: Our discussion highlighted that Integrated Innovation™ offers the opportunity to develop new theories, methods and approaches to global health while simultaneously fostering a collaborative spirit grounded in international, interdisciplinary collaborations. However, the arguable over-emphasis on corporatization poses a major challenge for new investigators. We propose a more balanced way forward that can harness technology to foster mentorship across time and space to support the development of such skills and ideas among new investigators.


Assuntos
Comportamento Cooperativo , Saúde Global , Pesquisa/organização & administração , Pesquisa Biomédica/organização & administração , Canadá , Humanos , Inovação Organizacional , Pesquisadores , Seguridade Social
5.
PLoS Negl Trop Dis ; 18(4): e0011867, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573915

RESUMO

BACKGROUND: Buruli ulcer (BU) is a skin neglected tropical disease (NTD) caused by Mycobacterium ulcerans. WHO-recommended treatment requires 8-weeks of daily rifampicin (RIF) and clarithromycin (CLA) with wound care. Treatment compliance may be challenging due to socioeconomic determinants. Previous minimum Inhibitory Concentration and checkerboard assays showed that amoxicillin/clavulanate (AMX/CLV) combined with RIF+CLA were synergistic against M. ulcerans. However, in vitro time kill assays (TKA) are a better approach to understand the antimicrobial activity of a drug over time. Colony forming units (CFU) enumeration is the in vitro reference method to measure bacterial load, although this is a time-consuming method due to the slow growth of M. ulcerans. The aim of this study was to assess the in vitro activity of RIF, CLA and AMX/CLV combinations against M. ulcerans clinical isolates by TKA, while comparing four methodologies: CFU enumeration, luminescence by relative light unit (RLU) and optical density (at 600 nm) measurements, and 16S rRNA/IS2404 genes quantification. METHODOLOGY/PRINCIPAL FINDINGS: TKA of RIF, CLA and AMX/CLV alone and in combination were performed against different M. ulcerans clinical isolates. Bacterial loads were quantified with different methodologies after 1, 3, 7, 10, 14, 21 and 28 days of treatment. RIF+AMX/CLV and the triple RIF+CLA+AMX/CLV combinations were bactericidal and more effective in vitro than the currently used RIF+CLA combination to treat BU. All methodologies except IS2404 quantitative PCR provided similar results with a good correlation with CFU enumeration. Measuring luminescence (RLU) was the most cost-effective methodology to quantify M. ulcerans bacterial loads in in vitro TKA. CONCLUSIONS/SIGNIFICANCE: Our study suggests that alternative and faster TKA methodologies can be used in BU research instead of the cumbersome CFU quantification method. These results provide an in vitro microbiological support to of the BLMs4BU clinical trial (NCT05169554, PACTR202209521256638) to shorten BU treatment.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , Claritromicina/farmacologia , Claritromicina/uso terapêutico , Rifampina/farmacologia , Rifampina/uso terapêutico , Mycobacterium ulcerans/genética , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Úlcera de Buruli/tratamento farmacológico , Úlcera de Buruli/microbiologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico
6.
J Biol Chem ; 287(1): 299-310, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22069311

RESUMO

Intrinsic drug resistance in Mycobacterium tuberculosis limits therapeutic options for treating tuberculosis. The mycobacterial transcriptional regulator whiB7 contributes to intrinsic resistance by activating its own expression and many drug resistance genes in response to antibiotics. To investigate whiB7 activation, we constructed a GFP reporter to monitor its expression, and we used it to investigate the whiB7 promoter and to screen our custom library of almost 600 bioactive compounds, including the majority of clinical antibiotics. Results showed whiB7 was transcribed from a promoter that was conserved across mycobacteria and other actinomycetes, including an AT-rich sequence that was likely targeted by WhiB7. Expression was induced by compounds having diverse structures and targets, independent of the ability of whiB7 to mediate resistance, and was dependent on media composition. Pretreatment with whiB7 activators resulted in clinically relevant increases in intrinsic drug resistance. Antibiotic-induced transcription was synergistically increased by the reductant dithiothreitol, an effect mirrored by a whiB7-dependent shift to a highly reduced cytoplasm reflected by the ratio of reduced/oxidized mycothiol. These data provided evidence that intrinsic resistance resulting from whiB7 activation is linked to fundamental changes in cell metabolism.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Homeostase/efeitos dos fármacos , Homeostase/genética , Mycobacterium/genética , Mycobacterium/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Farmacorresistência Bacteriana/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Genes Reporter/genética , Dados de Sequência Molecular , Mycobacterium/efeitos dos fármacos , Motivos de Nucleotídeos/genética , Oxirredução/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos dos fármacos
7.
Antimicrob Agents Chemother ; 57(2): 1040-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165468

RESUMO

Avermectins are a family of macrolides known for their anthelmintic activities and traditionally believed to be inactive against all bacteria. Here we report that members of the family, ivermectin, selamectin, and moxidectin, are bactericidal against mycobacterial species, including multidrug-resistant and extensively drug-resistant clinical strains of Mycobacterium tuberculosis. Avermectins are approved for clinical and veterinary uses and have documented pharmacokinetic and safety profiles. We suggest that avermectins could be repurposed for tuberculosis treatment.


Assuntos
Anti-Helmínticos/farmacologia , Ivermectina/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose/tratamento farmacológico , Anti-Helmínticos/uso terapêutico , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Testes de Sensibilidade Microbiana , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
8.
Antimicrob Agents Chemother ; 57(5): 2295-303, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23478953

RESUMO

The lack of effective therapies for treating tuberculosis (TB) is a global health problem. While Mycobacterium tuberculosis is notoriously resistant to most available antibiotics, we identified synthetic short cationic antimicrobial peptides that were active at low micromolar concentrations (less than 10 µM). These small peptides (averaging 10 amino acids) had remarkably broad spectra of antimicrobial activities against both bacterial and fungal pathogens and an indication of low cytotoxicity. In addition, their antimicrobial activities displayed various degrees of species specificity that were not related to taxonomy. For example, Candida albicans and Staphylococcus aureus were the best surrogates to predict peptide activity against M. tuberculosis, while Mycobacterium smegmatis was a poor surrogate. Principle component analysis of activity spectrum profiles identified unique features associated with activity against M. tuberculosis that reflect their distinctive amino acid composition; active peptides were more hydrophobic and cationic, reflecting increased tryptophan with compensating decreases in valine and other uncharged amino acids and increased lysine. These studies provide foundations for development of cationic antimicrobial peptides as potential new therapeutic agents for TB treatment.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Antituberculosos/farmacologia , Candida albicans/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/síntese química , Antituberculosos/síntese química , Candida albicans/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Modelos Biológicos , Dados de Sequência Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium tuberculosis/crescimento & desenvolvimento , Biblioteca de Peptídeos , Análise de Componente Principal , Especificidade da Espécie , Staphylococcus aureus/crescimento & desenvolvimento , Relação Estrutura-Atividade
9.
Antibiotics (Basel) ; 12(2)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36830246

RESUMO

Mycobacterium kansasii (Mkn) causes tuberculosis-like lung infection in both immunocompetent and immunocompromised patients. Current standard therapy against Mkn infection is lengthy and difficult to adhere to. Although ß-lactams are the most important class of antibiotics, representing 65% of the global antibiotic market, they have been traditionally dismissed for the treatment of mycobacterial infections, as they were considered inactive against mycobacteria. A renewed interest in ß-lactams as antimycobacterial agents has shown their activity against several mycobacterial species, including M. tuberculosis, M. ulcerans or M. abscessus; however, information against Mkn is lacking. In this study, we determined the in vitro activity of several ß-lactams against Mkn. A selection of 32 agents including all ß-lactam chemical classes (penicillins, cephalosporins, carbapenems and monobactams) with three ß-lactamase inhibitors (clavulanate, tazobactam and avibactam) were evaluated against 22 Mkn strains by MIC assays. Penicillins plus clavulanate and first- and third-generation cephalosporins were the most active ß-lactams against Mkn. Combinatorial time-kill assays revealed favorable interactions of amoxicillin-clavulanate and cefadroxil with first-line Mkn treatment. Amoxicillin-clavulanate and cefadroxil are oral medications that are readily available, and well tolerated with an excellent safety and pharmacokinetic profile that could constitute a promising alternative option for Mkn therapy.

10.
Sci Rep ; 13(1): 14429, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660210

RESUMO

Treatment of infections caused by multi-drug resistant (MDR) enterobacteria remains challenging due to the limited therapeutic options available. Drug repurposing could accelerate the development of new urgently needed successful interventions. This work aimed to identify and characterise novel drug combinations against Klebsiella pneumoniae based on the concepts of synergy and drug repurposing. We first performed a semi-qualitative high-throughput synergy screen (sHTSS) with tigecycline, colistin and fosfomycin (last-line antibiotics against MDR Enterobacteriaceae) against a FDA-library containing 1430 clinically approved drugs; a total of 109 compounds potentiated any of the last-line antibiotics. Selected hits were further validated by secondary checkerboard (CBA) and time-kill (TKA) assays, obtaining 15.09% and 65.85% confirmation rates, respectively. Accordingly, TKA were used for synergy classification based on determination of bactericidal activities at 8, 24 and 48 h, selecting 27 combinations against K. pneumoniae. Among them, zidovudine or azithromycin combinations with last-line antibiotics were further evaluated by TKA against a panel of 12 MDR/XDR K. pneumoniae strains, and their activities confronted with those clinical combinations currently used for MDR enterobacteria treatment; these combinations showed better bactericidal activities than usual treatments without added cytotoxicity. Our studies show that sHTSS paired to TKA are powerful tools for the identification and characterisation of novel synergistic drug combinations against K. pneumoniae. Further pre-clinical studies might support the translational potential of zidovudine- and azithromycin-based combinations for the treatment of these infections.


Assuntos
Antibacterianos , Azitromicina , Antibacterianos/farmacologia , Azitromicina/farmacologia , Klebsiella pneumoniae , Zidovudina/farmacologia , Tigeciclina , Enterobacteriaceae
11.
iScience ; 26(4): 106411, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37091238

RESUMO

Tuberculosis (TB) is the historical leading cause of death by a single infectious agent. The European Regimen Accelerator for Tuberculosis (ERA4TB) is a public-private partnership of 30+ institutions with the objective to progress new anti-TB regimens into the clinic. Thus, robust and replicable results across independent laboratories are essential for reliable interpretation of treatment efficacy. A standardization workgroup unified in vitro protocols and data reporting templates. Time-kill assays provide essential input data for pharmacometric model-informed translation of single agents and regimens activity from in vitro to in vivo and the clinic. Five conditions were assessed by time-kill assays in six independent laboratories using four bacterial plating methods. Baseline bacterial burden varied between laboratories but variability was limited in net drug effect, confirming 2.5 µL equally robust as 100 µL plating. This exercise establishes the foundations of collaborative data generation, reporting, and integration within the overarching Antimicrobial Resistance Accelerator program.

12.
Antimicrob Agents Chemother ; 56(4): 2074-83, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22232275

RESUMO

Efflux pumps extrude a wide variety of chemically unrelated compounds conferring multidrug resistance and participating in numerous physiological processes. Mycobacterium tuberculosis possesses many efflux pumps, and their roles in drug resistance and physiology are actively investigated. In this work we found that tap mutant cells showed changes in morphology and a progressive loss of viability upon subcultivation in liquid medium. Transcriptome analysis in Mycobacterium bovis BCG revealed that disruption of the Rv1258c gene, encoding the Tap efflux pump, led to an extensive change in gene expression patterns during stationary phase, with no changes during exponential growth. In stationary phase, Tap inactivation triggered a general stress response and led to a general repression of genes involved in cell wall biosynthesis, in particular the formation of the peptidoglycan; this suggested the accumulation of an unknown Tap substrate that reaches toxic concentrations during stationary phase. We also found that both disruption and overexpression of tap altered susceptibility to many clinically approved antibiotics in M. bovis BCG. Acriflavine and tetracycline accumulation assays and carbonyl cyanide m-chlorophenylhydrazone (CCCP) potentiation experiments demonstrated that this phenotype was due to an active efflux mechanism. These findings emphasize the important role of the Tap efflux pump in bacterial physiology and intrinsic drug resistance.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mycobacterium bovis/genética , Mycobacterium bovis/metabolismo , Acriflavina/metabolismo , Acriflavina/farmacologia , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Benzofenoneídio , Southern Blotting , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Corantes Fluorescentes , Genes Transgênicos Suicidas , Análise em Microsséries , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mycobacterium bovis/crescimento & desenvolvimento , Plasmídeos/genética , Reação em Cadeia da Polimerase , RNA Bacteriano/biossíntese , RNA Bacteriano/genética , Tetraciclina/metabolismo , Tetraciclina/farmacologia , Desacopladores/farmacologia
13.
J Nat Prod ; 75(12): 2178-82, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23205944

RESUMO

Four butenolides, ramariolides A-D (1-4), have been isolated from the fruiting bodies of the coral mushroom Ramaria cystidiophora. Their structures were elucidated by analysis of 1D and 2D NMR data and a single-crystal X-ray diffraction analysis of 1, and their absolute configurations were established using Mosher's method. The major metabolite, ramariolide A (1), which contains an unusual spiro oxiranebutenolide moiety, showed in vitro antimicrobial activity against Mycobacterium smegmatis and Mycobacterium tuberculosis.


Assuntos
4-Butirolactona/análogos & derivados , Agaricales/química , Antituberculosos/isolamento & purificação , Antituberculosos/farmacologia , 4-Butirolactona/química , 4-Butirolactona/isolamento & purificação , 4-Butirolactona/farmacologia , Acinetobacter/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antituberculosos/química , Escherichia coli/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Pseudomonas aeruginosa/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos
14.
Trials ; 23(1): 559, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804454

RESUMO

BACKGROUND: Buruli ulcer (BU) is a neglected tropical disease caused by Mycobacterium ulcerans that affects skin, soft tissues, and bones, causing long-term morbidity, stigma, and disability. The recommended treatment for BU requires 8 weeks of daily rifampicin and clarithromycin together with wound care, physiotherapy, and sometimes tissue grafting and surgery. Recovery can take up to 1 year, and it may pose an unbearable financial burden to the household. Recent in vitro studies demonstrated that beta-lactams combined with rifampicin and clarithromycin are synergistic against M. ulcerans. Consequently, inclusion of amoxicillin/clavulanate in a triple oral therapy may potentially improve and shorten the healing process. The BLMs4BU trial aims to assess whether co-administration of amoxicillin/clavulanate with rifampicin and clarithromycin could reduce BU treatment from 8 to 4 weeks. METHODS: We propose a randomized, controlled, open-label, parallel-group, non-inferiority phase II, multi-centre trial in Benin with participants stratified according to BU category lesions and randomized to two oral regimens: (i) Standard: rifampicin plus clarithromycin therapy for 8 weeks; and (ii) Investigational: standard plus amoxicillin/clavulanate for 4 weeks. The primary efficacy outcome will be lesion healing without recurrence and without excision surgery 12 months after start of treatment (i.e. cure rate). Seventy clinically diagnosed BU patients will be recruited per arm. Patients will be followed up over 12 months and managed according to standard clinical care procedures. Decision for excision surgery will be delayed to 14 weeks after start of treatment. Two sub-studies will also be performed: a pharmacokinetic and a microbiology study. DISCUSSION: If successful, this study will create a new paradigm for BU treatment, which could inform World Health Organization policy and practice. A shortened, highly effective, all-oral regimen will improve care of BU patients and will lead to a decrease in hospitalization-related expenses and indirect and social costs and improve treatment adherence. This trial may also provide information on treatment shortening strategies for other mycobacterial infections (tuberculosis, leprosy, or non-tuberculous mycobacteria infections). TRIAL REGISTRATION: ClinicalTrials.gov NCT05169554 . Registered on 27 December 2021.


Assuntos
Antibacterianos , Úlcera de Buruli , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Antibacterianos/uso terapêutico , Benin , Úlcera de Buruli/tratamento farmacológico , Claritromicina/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Humanos , Estudos Multicêntricos como Assunto , Ensaios Clínicos Controlados Aleatórios como Assunto , Rifampina/uso terapêutico , Resultado do Tratamento
15.
Antimicrob Agents Chemother ; 55(8): 3861-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576426

RESUMO

Therapeutic options for tuberculosis (TB) are limited and notoriously ineffective despite the wide variety of potent antibiotics available for treating other bacterial infections. We investigated an approach that enables an expansion of TB therapeutic strategies by using synergistic combinations of drugs. To achieve this, we devised a high-throughput synergy screen (HTSS) of chemical libraries having known pharmaceutical properties, including thousands that are clinically approved. Spectinomycin was used to test the concept that clinically available antibiotics with limited efficacy against Mycobacterium tuberculosis might be used for TB treatment when coadministered with a synergistic partner compound used as a sensitizer. Screens using Mycobacterium smegmatis revealed many compounds in our libraries that acted synergistically with spectinomycin. Among them, several families of antimicrobial compounds, including macrolides and azoles, were also synergistic against M. tuberculosis in vitro and in a macrophage model of M. tuberculosis infection. Strikingly, each sensitizer identified for synergy with spectinomycin uniquely enhanced the activities of other clinically used antibiotics, revealing a remarkable number of unexplored synergistic drug combinations. HTSS also revealed a novel activity for bromperidol, a butyrophenone used as an antipsychotic drug, which was discovered to be bactericidal and greatly enhanced the activities of several antibiotics and drug combinations against M. tuberculosis. Our results suggest that many compounds in the currently available pharmacopoeia could be readily mobilized for TB treatment, including disease caused by multi- and extensively drug-resistant strains for which there are no effective therapies.


Assuntos
Antituberculosos/farmacologia , Haloperidol/análogos & derivados , Mycobacterium tuberculosis/efeitos dos fármacos , Espectinomicina/farmacologia , Tuberculose/tratamento farmacológico , Sinergismo Farmacológico , Quimioterapia Combinada , Haloperidol/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Mycobacterium smegmatis/efeitos dos fármacos
16.
Antibiotics (Basel) ; 10(4)2021 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-33916775

RESUMO

Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.

17.
Antimicrob Agents Chemother ; 53(9): 3675-82, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19564371

RESUMO

Bacterial efflux pumps have traditionally been studied as low-level drug resistance determinants. Recent insights have suggested that efflux systems are often involved with fundamental cellular physiological processes, suggesting that drug extrusion may be a secondary function. In Mycobacterium tuberculosis, little is known about the physiological or drug resistance roles of efflux pumps. Using Mycobacterium bovis BCG as a model system, we showed that deletion of the Rv1410c gene encoding the P55 efflux pump made the strain more susceptible to a range of toxic compounds, including rifampin (rifampicin) and clofazimine, which are first- and second-line antituberculosis drugs. The efflux pump inhibitors carbonyl cyanide m-chlorophenylhydrazone (CCCP) and valinomycin inhibited the P55-determined drug resistance, suggesting the active export of the compounds by use of the transmembrane proton and electrochemical gradients as sources of energy. In addition, the P55 efflux pump mutant was more susceptible to redox compounds and displayed increased intracellular redox potential, suggesting an essential role of the efflux pump in detoxification processes coupled to oxidative balance within the cell. Finally, cells that lacked the p55 gene displayed smaller colony sizes and had a growth defect in liquid culture. This, together with an increased susceptibility to the cell wall-targeting compounds bacitracin and vancomycin, suggested that P55 is needed for proper cell wall assembly and normal growth in vitro. Thus, P55 plays a fundamental role in oxidative stress responses and in vitro cell growth, in addition to contributing to intrinsic antibiotic resistance. Inhibitors of the P55 efflux pump could help to improve current treatments for tuberculosis.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/fisiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Proteínas de Membrana Transportadoras/fisiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Estresse Oxidativo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Clofazimina/farmacologia , Ditiotreitol/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Glutationa/farmacologia , Peróxido de Hidrogênio/farmacologia , Proteínas de Membrana Transportadoras/genética , Mutação , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Rifampina/farmacologia , Valinomicina/farmacologia
20.
Biochem Pharmacol ; 163: 299-307, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30836058

RESUMO

Antibiotics have become the corner stone of modern medicine. However, our society is currently facing one of the greatest challenges of its time: the emergence of antimicrobial resistance. It is estimated that if no new therapies are implemented by 2050, 10 million people will die worldwide every year as a result of infections caused by bacteria resistant to current antibiotics; new antimicrobials are thus urgently needed. However, drug development is a tedious and very costly endeavor of hundreds of millions that can take up to 15-20 years from the bench discovery to the bedside. Under this scenario, drug repurposing, which consists in identifying new uses for old, clinically approved drugs, has gathered momentum within the pharmaceutical industry. Because most of these drugs have safety and toxicity information packages available, clinical evaluation could be done in a much shorter period than standard timelines. Synergistic combinations of these clinically approved drugs could also be a promising approach to identify novel antimicrobial therapies that might provide rational choices of available drugs to shorten treatment, increase efficacy, reduce toxicity, prevent resistance and treat infections caused by drug-resistant strains. However, although simple in its conception, translating results from in vitro synergy screens into in vivo efficacy or the clinical practice has proven to be a paramount challenge. In this Commentary, we will discuss common flaws at the inception of synergy research programs, with a special focus on the use of the Fractional Inhibitory Concentration Index (FICI), and evaluate potential interventions that can be made at different developmental pre-clinical stages in order to improve the odds of translation from in vitro studies.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Técnicas Microbiológicas , Projetos de Pesquisa , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa