Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Adv ; 10(1): eadj4686, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170783

RESUMO

Type 1 diabetes mellitus (T1DM) is characterized by insulin deficiency leading to hyperglycemia and several metabolic defects. Insulin therapy remains the cornerstone of T1DM management, yet it increases the risk of life-threatening hypoglycemia and the development of major comorbidities. Here, we report an insulin signaling-independent pathway able to improve glycemic control in T1DM rodents. Co-treatment with recombinant S100 calcium-binding protein A9 (S100A9) enabled increased adherence to glycemic targets with half as much insulin and without causing hypoglycemia. Mechanistically, we demonstrate that the hyperglycemia-suppressing action of S100A9 is due to a Toll-like receptor 4-dependent increase in glucose uptake in specific skeletal muscles (i.e., soleus and diaphragm). In addition, we found that T1DM mice have abnormal systemic inflammation, which is resolved by S100A9 therapy alone (or in combination with low insulin), hence uncovering a potent anti-inflammatory action of S100A9 in T1DM. In summary, our findings reveal the S100A9-TLR4 skeletal muscle axis as a promising therapeutic target for improving T1DM treatment.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Hipoglicemia , Animais , Camundongos , Insulina/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemia/complicações , Hipoglicemia/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Calgranulina B
2.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38464291

RESUMO

Lung cancer, the leading cause of cancer mortality, exhibits diverse histological subtypes and genetic complexities. Numerous preclinical mouse models have been developed to study lung cancer, but data from these models are disparate, siloed, and difficult to compare in a centralized fashion. Here we established the Lung Cancer Mouse Model Database (LCMMDB), an extensive repository of 1,354 samples from 77 transcriptomic datasets covering 974 samples from genetically engineered mouse models (GEMMs), 368 samples from carcinogen-induced models, and 12 samples from a spontaneous model. Meticulous curation and collaboration with data depositors have produced a robust and comprehensive database, enhancing the fidelity of the genetic landscape it depicts. The LCMMDB aligns 859 tumors from GEMMs with human lung cancer mutations, enabling comparative analysis and revealing a pressing need to broaden the diversity of genetic aberrations modeled in GEMMs. Accompanying this resource, we developed a web application that offers researchers intuitive tools for in-depth gene expression analysis. With standardized reprocessing of gene expression data, the LCMMDB serves as a powerful platform for cross-study comparison and lays the groundwork for future research, aiming to bridge the gap between mouse models and human lung cancer for improved translational relevance.

3.
Proc Natl Acad Sci U S A ; 107(40): 17391-6, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855609

RESUMO

Leptin monotherapy reverses the deadly consequences and improves several of the metabolic imbalances caused by insulin-deficient type 1 diabetes (T1D) in rodents. However, the mechanism(s) underlying these effects is totally unknown. Here, we report that intracerebroventricular (icv) infusion of leptin reverses lethality and greatly improves hyperglycemia, hyperglucagonemia, hyperketonemia, and polyuria caused by insulin deficiency in mice. Notably, icv leptin administration leads to increased body weight while suppressing food intake, thus correcting the catabolic consequences of T1D. Also, icv leptin delivery improves expression of the metabolically relevant hypothalamic neuropeptides proopiomelanocortin, neuropeptide Y, and agouti-related peptide in T1D mice. Furthermore, this treatment normalizes phosphoenolpyruvate carboxykinase 1 contents without affecting glycogen levels in the liver. Pancreatic ß-cell regeneration does not underlie these beneficial effects of leptin, because circulating insulin levels were undetectable at basal levels and following a glucose overload. Also, pancreatic preproinsulin mRNA was completely absent in these icv leptin-treated T1D mice. Furthermore, the antidiabetic effects of icv leptin administration rapidly vanished (i.e., within 48 h) after leptin treatment was interrupted. Collectively, these results unveil a key role for the brain in mediating the antidiabetic actions of leptin in the context of T1D.


Assuntos
Sistema Nervoso Central/fisiologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Leptina/uso terapêutico , Animais , Modelos Animais de Doenças , Humanos , Injeções Intraventriculares , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Leptina/farmacologia , Masculino , Camundongos , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Placebos , Precursores de Proteínas/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
4.
Nat Commun ; 13(1): 4107, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840613

RESUMO

Unrestrained ketogenesis leads to life-threatening ketoacidosis whose incidence is high in patients with diabetes. While insulin therapy reduces ketogenesis this approach is sub-optimal. Here, we report an insulin-independent pathway able to normalize diabetic ketogenesis. By generating insulin deficient male mice lacking or re-expressing Toll-Like Receptor 4 (TLR4) only in liver or hepatocytes, we demonstrate that hepatic TLR4 in non-parenchymal cells mediates the ketogenesis-suppressing action of S100A9. Mechanistically, S100A9 acts extracellularly to activate the mechanistic target of rapamycin complex 1 (mTORC1) in a TLR4-dependent manner. Accordingly, hepatic-restricted but not hepatocyte-restricted loss of Tuberous Sclerosis Complex 1 (TSC1, an mTORC1 inhibitor) corrects insulin-deficiency-induced hyperketonemia. Therapeutically, recombinant S100A9 administration restrains ketogenesis and improves hyperglycemia without causing hypoglycemia in diabetic mice. Also, circulating S100A9 in patients with ketoacidosis is only marginally increased hence unveiling a window of opportunity to pharmacologically augment S100A9 for preventing unrestrained ketogenesis. In summary, our findings reveal the hepatic S100A9-TLR4-mTORC1 axis in non-parenchymal cells as a promising therapeutic target for restraining diabetic ketogenesis.


Assuntos
Diabetes Mellitus Experimental , Cetose , Animais , Calgranulina B/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
5.
Pharmacol Res ; 62(1): 48-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20138996

RESUMO

Sirtuins are deacetylases and/or mono-ADP-ribosyltransferases found in organisms ranging from bacteria to humans. These enzymes use oxidized nicotinamide adenine dinucleotide (NAD(+)) and a long array of different proteins (e.g.: histones, transcription factors, cofactors, members of the electron transport chain, etc.) as substrates. Sirtuins-mediated reactions yield deacetylated proteins, nicotinamide (NAM) and 2'-O-acetyl-ADP-ribose (O-AADPr) or mono-ADP-ribosylated proteins and NAM. As these post-translational modifications change the activity of their targets and sirtuins depend on NAD(+) to function, these enzymes are thought to link metabolic statuses with cellular gene expression, activity and fate; as such sirtuins are thought to be bona fide metabolic-sensor proteins. Due to their diverse targets, sirtuins affect metabolism, senescence, longevity, circadian rhythms and many other biological and physiological programs. In this review we focus on their known roles on metabolic homeostasis with particular emphasis on their functions in neurons within the central nervous system (CNS). We also touch upon the possible metabolic outcomes of pharmacological manipulations of CNS sirtuins.


Assuntos
Encéfalo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Sirtuínas/fisiologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Núcleo Celular/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/metabolismo , Sirtuínas/metabolismo , Especificidade por Substrato
6.
Cell Rep ; 30(11): 3851-3863.e6, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187554

RESUMO

Cancer therapy is limited, in part, by lack of specificity. Thus, identifying molecules that are selectively expressed by, and relevant for, cancer cells is of paramount medical importance. Here, we show that peptidyl-prolyl-cis-trans-isomerase (PPIase) FK506-binding protein 10 (FKBP10)-positive cells are present in cancer lesions but absent in the healthy parenchyma of human lung. FKBP10 expression negatively correlates with survival of lung cancer patients, and its downregulation causes a dramatic diminution of lung tumor burden in mice. Mechanistically, our results from gain- and loss-of-function assays show that FKBP10 boosts cancer growth and stemness via its PPIase activity. Also, FKBP10 interacts with ribosomes, and its downregulation leads to reduction of translation elongation at the beginning of open reading frames (ORFs), particularly upon insertion of proline residues. Thus, our data unveil FKBP10 as a cancer-selective molecule with a key role in translational reprogramming, stem-like traits, and growth of lung cancer.


Assuntos
Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Biossíntese de Proteínas , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Peptidilprolil Isomerase/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ribossomos/metabolismo
7.
J Neurosci ; 28(40): 9989-96, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18829956

RESUMO

SIRT1 is a nicotinamide adenosine dinucleotide-dependent deacetylase that orchestrates key metabolic adaptations to nutrient deprivation in peripheral tissues. SIRT1 is induced also in the brain by reduced energy intake. However, very little is known about SIRT1 distribution and the biochemical phenotypes of SIRT1-expressing cells in the neuraxis. Unknown are also the brain sites in which SIRT1 is regulated by energy availability and whether these regulations are altered in a genetic model of obesity. To address these issues, we performed in situ hybridization histochemistry analyses and found that Sirt1 mRNA is highly expressed in metabolically relevant sites. These include, but are not limited to, the hypothalamic arcuate, ventromedial, dorsomedial, and paraventricular nuclei and the area postrema and the nucleus of the solitary tract in the hindbrain. Of note, our single-cell reverse transcription-PCR analyses revealed that Sirt1 mRNA is expressed in pro-opiomelanocortin neurons that are critical for normal body weight and glucose homeostasis. We also found that SIRT1 protein levels are restrictedly increased in the hypothalamus in the fasted brain. Of note, we found that this hypothalamic-specific, fasting-induced SIRT1 regulation is altered in leptin-deficient, obese mice. Collectively, our findings establish the distribution of Sirt1 mRNA throughout the neuraxis and suggest a previously unrecognized role of brain SIRT1 in regulating energy homeostasis.


Assuntos
Química Encefálica/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Sirtuínas/metabolismo , Animais , Encéfalo/fisiologia , Homeostase/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Sirtuína 1 , Sirtuínas/fisiologia
8.
Nat Clin Pract Endocrinol Metab ; 5(3): 160-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19229236

RESUMO

Individuals who live in industrialized countries often eat a calorie-rich diet and perform little physical activity. These habits are thought to be critical contributors to the rapidly rising incidence of obesity, a condition that affects hundreds of millions of people worldwide. High-calorie intake alters metabolic-sensing pathways in central nervous system neurons, and these changes have pathogenic roles in the development of obesity. This review aims to summarize our current knowledge about the neuronal populations (the central melanocortin system in particular) and transcriptional regulators, including STAT3 and FOXO1, that are involved in the maintenance of normal body weight. We describe the interactions between these transcriptional factors and their target genes, which encode the main appetite-regulating neuropeptides (agouti-related peptide and alpha-melanocyte-stimulating hormone). We discuss the transcriptional co-activator PGC-1-alpha and the supposed metabolic-sensor protein SIRT1, and their potential roles as targets for novel antiobesity medications.


Assuntos
Apetite/fisiologia , Peso Corporal/fisiologia , Fatores de Transcrição/fisiologia , Apetite/genética , Peso Corporal/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/fisiologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/fisiologia , Modelos Biológicos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/fisiologia , Sirtuína 1 , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Nat Commun ; 10(1): 3545, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391467

RESUMO

Tens of millions suffer from insulin deficiency (ID); a defect leading to severe metabolic imbalance and death. The only means for management of ID is insulin therapy; yet, this approach is sub-optimal and causes life-threatening hypoglycemia. Hence, ID represents a great medical and societal challenge. Here we report that S100A9, also known as Calgranulin B or Myeloid-Related Protein 14 (MRP14), is a leptin-induced circulating cue exerting beneficial anti-diabetic action. In murine models of ID, enhanced expression of S100A9 alone (i.e. without administered insulin and/or leptin) slightly improves hyperglycemia, and normalizes key metabolic defects (e.g. hyperketonemia, hypertriglyceridemia, and increased hepatic fatty acid oxidation; FAO), and extends lifespan by at least a factor of two. Mechanistically, we report that Toll-Like Receptor 4 (TLR4) is required, at least in part, for the metabolic-improving and pro-survival effects of S100A9. Thus, our data identify the S100A9/TLR4 axis as a putative target for ID care.


Assuntos
Calgranulina B/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hiperglicemia/metabolismo , Longevidade/fisiologia , Receptor 4 Toll-Like/metabolismo , Animais , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Toxina Diftérica/toxicidade , Ácidos Graxos/metabolismo , Humanos , Hiperglicemia/sangue , Hiperglicemia/etiologia , Insulina/deficiência , Leptina/administração & dosagem , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Oxirredução , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estreptozocina/toxicidade , Receptor 4 Toll-Like/genética
10.
Cell Rep ; 27(8): 2385-2398.e3, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116983

RESUMO

Loss of synchrony between geophysical time and insulin action predisposes to metabolic diseases. Yet the brain and peripheral pathways linking proper insulin effect to diurnal changes in light-dark and feeding-fasting inputs are poorly understood. Here, we show that the insulin sensitivity of several metabolically relevant tissues fluctuates during the 24 h period. For example, in mice, the insulin sensitivity of skeletal muscle, liver, and adipose tissue is lowest during the light period. Mechanistically, by performing loss- and gain-of-light-action and food-restriction experiments, we demonstrate that SIRT1 in steroidogenic factor 1 (SF1) neurons of the ventromedial hypothalamic nucleus (VMH) convey photic inputs to entrain the biochemical and metabolic action of insulin in skeletal muscle. These findings uncover a critical light-SF1-neuron-skeletal-muscle axis that acts to finely tune diurnal changes in insulin sensitivity and reveal a light regulatory mechanism of skeletal muscle function.


Assuntos
Insulina/metabolismo , Músculo Esquelético/metabolismo , Fototerapia/métodos , Núcleo Hipotalâmico Ventromedial/fisiopatologia , Animais , Ritmo Circadiano , Humanos , Camundongos
11.
Hum Gene Ther ; 19(3): 229-40, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18269312

RESUMO

We have shown that electroporation of plasmid carrying extracellular and transmembrane domains (EC-TM plasmid) encoded by the rat neu oncogene triggers a protective immune response toward rat p185(neu)-positive tumors in both wild-type BALB/c mice and cancer-prone rat neu-transgenic BALB-neuT mice. To identify the critical fragments that confer this protective immunity, mice were electroporated with plasmids encoding the TM domain associated with decreasing fragments of the EC domain and the antitumor protection afforded, the titer of antibody, and cytotoxic T lymphocyte (CTL) activity elicited to Neu protein were evaluated. Plasmids encoding EC fragments shortened by 70 (EC1-TM plasmid), 150 (EC2-TM), 230 (EC3-TM), 310 (EC4-TM), and 390 (EC5-TM) NH(2)-terminal residues afforded effective protection. Plasmids encoding shorter truncated proteins were ineffective. When the immunogenic protein was retained in the cytoplasm (EC1-TM, EC2-TM, and EC5-TM), only a CTL response was elicited, whereas when it was also expressed on the membrane (EC4-TM) both CTLs and antibodies were induced. EC4-TM encoding a truncated protein with an EC portion of only 344 amino acids conferred protection on both BALB/c and BALB-neuT mice comparable to that of EC-TM.


Assuntos
Genes erbB-2 , Neoplasias Mamárias Animais/imunologia , Receptor ErbB-2/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Anticorpos/imunologia , Linhagem Celular , Eletroporação , Feminino , Fibroblastos , Terapia Genética , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Plasmídeos/genética , Ratos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
12.
Cell Rep ; 18(8): 1858-1868, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28228253

RESUMO

Cancer stem cells (CSCs) have high tumorigenic capacity. Here, we show that stem-like traits of specific human cancer cells are reduced by overexpression of the histone deacetylase sirtuin 6 (SIRT6). SIRT6-sensitive cancer cells bear mutations that activate phosphatidylinositol-3-kinase (PI3K) signaling, and overexpression of SIRT6 reduces growth, progression, and grade of breast cancer in a mouse model with PI3K activation. Tumor metabolomic and transcriptomic analyses reveal that SIRT6 overexpression dampens PI3K signaling and stem-like characteristics and causes metabolic rearrangements in this cancer model. Ablation of a PI3K activating mutation in otherwise isogenic cancer cells is sufficient to convert SIRT6-sensitive into SIRT6-insensitive cells. SIRT6 overexpression suppresses PI3K signaling at the transcriptional level and antagonizes tumor sphere formation independent of its histone deacetylase activity. Our data identify SIRT6 as a putative molecular target that hinders stemness of tumors with PI3K activation.


Assuntos
Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Sirtuínas/metabolismo , Acetilação , Animais , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia
13.
Nat Commun ; 8(1): 1820, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29180649

RESUMO

Obesity-induced inflammation engenders insulin resistance and type 2 diabetes mellitus (T2DM) but the inflammatory effectors linking obesity to insulin resistance are incompletely understood. Here, we show that hepatic expression of Protein Tyrosine Phosphatase Receptor Gamma (PTPR-γ) is stimulated by inflammation in obese/T2DM mice and positively correlates with indices of inflammation and insulin resistance in humans. NF-κB binds to the promoter of Ptprg and is required for inflammation-induced PTPR-γ expression. PTPR-γ loss-of-function lowers glycemia and insulinemia by enhancing insulin-stimulated suppression of endogenous glucose production. These phenotypes are rescued by re-expression of Ptprg only in liver of mice lacking Ptprg globally. Hepatic PTPR-γ overexpression that mimics levels found in obesity is sufficient to cause severe hepatic and systemic insulin resistance. We propose hepatic PTPR-γ as a link between obesity-induced inflammation and insulin resistance and as potential target for treatment of T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Obesidade/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/metabolismo , Adulto , Idoso , Animais , Glicemia , Linhagem Celular , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Inflamação/metabolismo , Insulina/sangue , Interleucina-6/metabolismo , Metabolismo dos Lipídeos , Lipopolissacarídeos/efeitos adversos , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Pessoa de Meia-Idade , Modelos Animais , NF-kappa B/metabolismo , Obesidade/sangue , Obesidade/complicações , Proteínas Tirosina Fosfatases/metabolismo , RNA Mensageiro/biossíntese , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética , Sirtuína 1/metabolismo
14.
Cell Metab ; 23(3): 467-78, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26959185

RESUMO

Organismal homeostasis relies on coherent interactions among tissues, specifically between brain-driven functions and peripheral metabolic organs. Hypothalamic circuits compute metabolic information to optimize energetic resources, but the role of the circadian clock in these pathways remains unclear. We have generated mice with targeted ablation of the core-clock gene Bmal1 within Sf1-neurons of the ventromedial hypothalamus (VMH). While this mutation does not affect the central clock in the suprachiasmatic nucleus (SCN), the VMH clock controls cyclic thermogenesis in brown adipose tissue (BAT), a tissue that governs energy balance by dissipating chemical energy as heat. VMH-driven control is exerted through increased adrenergic signaling within the sympathetic nervous system, without affecting the BAT's endogenous clock. Moreover, we show that the VMH circadian clock computes light and feeding inputs to modulate basal energy expenditure. Thus, we reveal a previously unsuspected circuit where an SCN-independent, hypothalamic circadian clock controls BAT function, energy expenditure, and thermogenesis.


Assuntos
Metabolismo Energético , Núcleo Supraquiasmático/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Relógios Circadianos , Ritmo Circadiano , Homeostase , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas Circadianas Period/fisiologia , Sistema Nervoso Simpático/fisiologia , Termogênese
15.
Endocrinology ; 156(6): 2174-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25763637

RESUMO

Circadian rhythms govern homeostasis and organism physiology. Nutritional cues act as time givers, contributing to the synchronization between central and peripheral clocks. Neuronal food-synchronized clocks are thought to reside in hypothalamic nuclei such as the ventromedial hypothalamus (VMH) and the dorsomedial hypothalamus or extrahypothalamic brain areas such as nucleus accumbens. Interestingly, the metabolic sensor of nicotinamide adenine dinucleotide-dependent deacetylase sirtuin-1 (SIRT1) is highly expressed in the VMH and was shown to contribute to both control of energy balance and clock function. We used mice with targeted ablation of Sirt1 in the steroidogenic factor 1 neurons of the VMH to gain insight on the role played by this deacetylase in the modulation of the central clock by nutritional inputs. By studying circadian behavior and circadian gene expression, we reveal that SIRT1 operates as a metabolic sensor connecting food intake to circadian behavior. Indeed, under food restriction and absence of light, SIRT1 in the VMH contributes to activity behavior and circadian gene expression in the suprachiasmatic nucleus. Thus, under specific physiological conditions, SIRT1 contributes to the modulation of the circadian clock by nutrients.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Neurônios/metabolismo , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Encéfalo/metabolismo , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Masculino , Camundongos , Fatores de Processamento de RNA , Sirtuína 1/genética , Fatores de Transcrição/genética
16.
Cell Metab ; 21(1): 117-25, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533479

RESUMO

Dietary effects on tumor biology can be exploited to unravel cancer vulnerabilities. Here, we present surprising evidence for anti-proliferative action of high-calorie-diet (HCD) feeding on KRAS-driven lung tumors. Tumors of mice that commenced HCD feeding before tumor onset displayed defective unfolded protein response (UPR) and unresolved endoplasmic reticulum (ER) stress. Unresolved ER stress and reduced proliferation are reversed by chemical chaperone treatment. Whole-genome transcriptional analyses revealed FKBP10 as one of the most downregulated chaperones in tumors of the HCD-pre-tumor-onset group. FKBP10 downregulation dampens tumor growth in vitro and in vivo. Providing translational value to these results, we report that FKBP10 is expressed in human KRAS-positive and -negative lung cancers, but not in healthy parenchyma. Collectively, our data shed light on an unexpected anti-tumor action of HCD imposed before tumor onset and identify FKBP10 as a putative therapeutic target to selectively hinder lung cancer.


Assuntos
Dieta , Neoplasias Pulmonares/patologia , Fenilbutiratos/toxicidade , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/efeitos dos fármacos , Regulação para Baixo , Doxiciclina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos SCID , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Tacrolimo/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Transplante Heterólogo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Proteínas ras/genética
17.
Mol Metab ; 4(11): 846-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26629408

RESUMO

OBJECTIVE: Available treatment for obesity and type 2 diabetes mellitus (T2DM) is suboptimal. Thus, identifying novel molecular target(s) exerting protective effects against these metabolic imbalances is of enormous medical significance. Sirt6 loss- and gain-of-function studies have generated confounding data regarding the role of this sirtuin on energy and glucose homeostasis, leaving unclear whether activation or inhibition of SIRT6 may be beneficial for the treatment of obesity and/or T2DM. METHODS: To address these issues, we developed and studied a novel mouse model designed to produce eutopic and physiological overexpression of SIRT6 (Sirt6BAC mice). These mutants and their controls underwent several metabolic analyses. These include whole-blood reverse phase high-performance liquid chromatography assay, glucose and pyruvate tolerance tests, hyperinsulinemic-euglycemic clamp assays, and assessment of basal and insulin-induced level of phosphorylated AKT (p-AKT)/AKT in gastrocnemius muscle. RESULTS: Sirt6BAC mice physiologically overexpress functionally competent SIRT6 protein. While Sirt6BAC mice have normal body weight and adiposity, they are protected from developing high-caloric-diet (HCD)-induced hyperglycemia and glucose intolerance. Also, Sirt6BAC mice display increased circulating level of the polyamine spermidine. The ability of insulin to suppress endogenous glucose production was significantly enhanced in Sirt6BAC mice compared to wild-type controls. Insulin-stimulated glucose uptake was increased in Sirt6BAC mice in both gastrocnemius and soleus muscle, but not in brain, interscapular brown adipose, or epididymal adipose tissue. Insulin-induced p-AKT/AKT ratio was increased in gastrocnemius muscle of Sirt6BAC mice compared to wild-type controls. CONCLUSIONS: Our data indicate that moderate, physiological overexpression of SIRT6 enhances insulin sensitivity in skeletal muscle and liver, engendering protective actions against diet-induced T2DM. Hence, the present study provides support for the anti-T2DM effect of SIRT6 and suggests SIRT6 as a putative molecular target for anti-T2DM treatment.

18.
Vaccines (Basel) ; 1(4): 463-80, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-26344342

RESUMO

In veterinary medicine, there have been different experiences with the plasmid DNA vaccination. In this area and with the hypothesis to demonstrate the effectiveness of different plasmids encoding porcine respiratory and reproductive syndrome (PRRS), five DNA vaccines against PRRS were evaluated for their innocuity and efficacy in pigs. Eighteen animals were divided into five groups which were injected with five (A, B, C, D, E) different DNA vaccines. Albeit, none of the proposed vaccines were able to protect the animals against PRRS virus. Only vaccines A and B were able to reduce the clinical signs of the infection. ELISA IgM were detected 30 days after the first vaccination in the pigs injected by Vaccine A or B. ELISA IgG were detected 90 days after the first vaccination in the pigs injected by Vaccine B or C. Neutralizing antibody were detected Post Challenge Days 61 (PCD) in all groups. In the pigs inoculated with Vaccine C, IFN-g were detected 90 days after first vaccination, and after challenge exposure they increased. In the other groups, the IFN-g were detected after challenge infection. Pigs injected with each of the vaccines A, B, C, D and E showed a significantly higher level of CD4(-)CD8⁺ lymphocytes (p < 0.001) after infection in comparison with their controls.

19.
Cancer Discov ; 3(4): 444-57, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23358651

RESUMO

UNLABELLED: Non-small cell lung cancer (NSCLC) often expresses mutant KRAS together with tumor-associated mutations of the CDKN2A locus, which are associated with aggressive, therapy-resistant tumors. Here, we unravel specific requirements for the maintenance of NSCLC that carries this genotype. We establish that the extracellular signal-regulated kinase (ERK)/RHOA/focal adhesion kinase (FAK) network is deregulated in high-grade lung tumors. Suppression of RHOA or FAK induces cell death selectively in mutant KRAS;INK4A/ARF-deficient lung cancer cells. Furthermore, pharmacologic inhibition of FAK caused tumor regression specifically in the high-grade lung cancer that developed in mutant Kras;Cdkn2a-null mice. These findings provide a rationale for the rapid implementation of genotype-specific targeted therapies using FAK inhibitors in patients with cancer. SIGNIFICANCE: Targeted therapies are effective for only a small fraction of patients with cancer. We report that FAK inhibitors exert potent antitumor effects in NSCLCs that express mutant KRAS in association with INK4A/ARF deficiency. These results reveal a novel genotype-specific vulnerability of cancer cells that can be exploited for therapeutic purposes.


Assuntos
Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Genes ras/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/antagonistas & inibidores , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell Metab ; 18(3): 431-44, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24011077

RESUMO

The dogma that life without insulin is incompatible has recently been challenged by results showing the viability of insulin-deficient rodents undergoing leptin monotherapy. Yet, the mechanisms underlying these actions of leptin are unknown. Here, the metabolic outcomes of intracerebroventricular (i.c.v.) administration of leptin in mice devoid of insulin and lacking or re-expressing leptin receptors (LEPRs) only in selected neuronal groups were assessed. Our results demonstrate that concomitant re-expression of LEPRs only in hypothalamic γ-aminobutyric acid (GABA) and pro-opiomelanocortin (POMC) neurons is sufficient to fully mediate the lifesaving and antidiabetic actions of leptin in insulin deficiency. Our analyses indicate that enhanced glucose uptake by brown adipose tissue and soleus muscle, as well as improved hepatic metabolism, underlies these effects of leptin. Collectively, our data elucidate a hypothalamic-dependent pathway enabling life without insulin and hence pave the way for developing better treatments for diseases of insulin deficiency.


Assuntos
Hipotálamo/efeitos dos fármacos , Insulina/metabolismo , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glucose/análise , Hiperglicemia/tratamento farmacológico , Hiperglicemia/mortalidade , Hipotálamo/metabolismo , Estimativa de Kaplan-Meier , Leptina/uso terapêutico , Fígado/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa