Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 49(4): 2503-11, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25582654

RESUMO

Decisions concerning future land-use/land cover change stand at the forefront of ongoing debates on how to best mitigate climate change. In this study, we compare the greenhouse gas (GHG) mitigation value over a 30-year time frame for a range of forest recovery and biofuel production scenarios on abandoned agricultural land. Carbon sequestration in recovering forests is estimated based on a statistical analysis of tropical and temperate studies on marginal land. GHGs offset by biofuel production are analyzed for five different production pathways. We find that forest recovery is superior to low-yielding biofuel production scenarios such as oil palm and corn. Biofuel production scenarios with high yields, such as sugarcane or high-yielding energy grasses, can be comparable or superior to natural forest succession and to reforestation in some cases. This result stands in contrast to previous research suggesting that restoring degraded ecosystems to their native state is generally superior to agricultural production in terms of GHG mitigation. Further work is needed on carbon stock changes in forests, soil carbon dynamics, and bioenergy crop production on degraded/abandoned agricultural land. This finding also emphasizes the need to consider the full range of social, economic, and ecological consequences of land-use policies.


Assuntos
Agricultura , Biocombustíveis , Florestas , Efeito Estufa/prevenção & controle , Solo/química , Biomassa , Carbono/metabolismo , Ecossistema
2.
Conserv Biol ; 27(2): 364-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23282082

RESUMO

Tropical forest ecosystems are threatened by habitat conversion and other anthropogenic actions. Timber production forests can augment the conservation value of primary forest reserves, but studies of logging effects often yield contradictory findings and thus inhibit efforts to develop clear conservation strategies. We hypothesized that much of this variability reflects a common methodological flaw, simple pseudoreplication, that confounds logging effects with preexisting spatial variation. We reviewed recent studies of the effects of logging on biodiversity in tropical forests (n = 77) and found that 68% were definitively pseudoreplicated while only 7% were definitively free of pseudoreplication. The remaining proportion could not be clearly categorized. In addition, we collected compositional data on 7 taxa in 24 primary forest research plots and systematically analyzed subsets of these plots to calculate the probability that a pseudoreplicated comparison would incorrectly identify a treatment effect. Rates of false inference (i.e., the spurious detection of a treatment effect) were >0.5 for 2 taxa, 0.3-0.5 for 2 taxa, and <0.3 for 3 taxa. Our findings demonstrate that tropical conservation strategies are being informed by a body of literature that is rife with unwarranted inferences. Addressing pseudoreplication is essential for accurately assessing biodiversity in logged forests, identifying the relative merits of specific management practices and landscape configurations, and effectively balancing conservation with timber production in tropical forests.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecossistema , Clima Tropical , Bioestatística , Modelos Biológicos , Distribuição Aleatória , Reprodutibilidade dos Testes , Projetos de Pesquisa/normas
3.
Ecol Evol ; 13(8): e10413, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37593754

RESUMO

Forest biodiversity is likely maintained by a complex suite of interacting drivers that vary in importance across both space and time. Contributing factors include disturbance, interannual variation in abiotic variables, and biotic neighborhood effects. To probe ongoing uncertainties and potential interactions, we investigated tree seedling performance in a temperate mid-Atlantic forest ecosystem. We planted seedlings of five native tree species in mapped study plots, half of which were subjected to disturbance, and then monitored seedling survival, height growth, and foliar condition. The final year of data collection encompassed a drought, enabling comparison between intervals varying in water availability. Seedling performance was analyzed as a function of canopy cover and biotic neighborhood (conspecific and heterospecific abundance), including interactions, with separate generalized linear mixed models fit for each interval. All species exhibited: (a) pronounced declines in height growth during the drought year, (b) detrimental effects of adult conspecifics, and (c) beneficial effects of canopy openness. However, despite these consistencies, there was considerable variation across species in terms of the relevant predictors for each response variable in each interval. Our results suggest that drought may strengthen or reveal conspecific inhibition in some instances while weakening it or obscuring it in others, and that some forms of conspecific inhibition may manifest only under particular canopy conditions (although given the inconsistency of our findings, we are not convinced that conspecific inhibition is critical for diversity maintenance in our study system). Overall, our work reveals a complex forest ecosystem that appears simultaneously and interactively governed by biotic neighborhood structure (e.g., conspecific and/or heterospecific abundance), local habitat conditions (e.g., canopy cover), and interannual variability (e.g., drought).

4.
Ecol Evol ; 7(19): 7661-7671, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29043023

RESUMO

Local tree species diversity is maintained in part by conspecific negative density dependence (CNDD). This pervasive mechanism occurs in a variety of forms and ecosystems, but research to date has been heavily skewed toward tree seedling survival in tropical forests. To evaluate CNDD more broadly, we investigated how sapling growth rates were affected by conspecific adult neighbors in a fully mapped 25.6 ha temperate deciduous forest. We examined growth rates as a function of the local adult tree neighborhood (via spatial autoregressive modeling) and compared the spatial positioning of faster-growing and slower-growing saplings with respect to adult conspecific and heterospecific trees (via bivariate point pattern analysis). In addition, to determine whether CNDD-driven variation in growth rates leaves a corresponding spatial signal, we extended our point pattern analysis to a static, growth-independent comparison of saplings and the next larger size class. We found that negative conspecific effects on sapling growth were most prevalent. Five of the nine species that were sufficiently abundant for analysis exhibited CNDD, while only one species showed evidence of a positive conspecific effect, and one or two species, depending on the analysis, displayed heterospecific effects. There was general agreement between the autoregressive models and the point pattern analyses based on sapling growth rates, but point pattern analyses based on single-point-in-time size classes yielded results that differed markedly from the other two approaches. Our work adds to the growing body of evidence that CNDD is an important force in temperate forests, and demonstrates that this process extends to sapling growth rates. Further, our findings indicate that point pattern analyses based solely on size classes may fail to detect the process of interest (e.g., neighborhood-driven variation in growth rates), in part due to the confounding of tree size and age.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa