Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neurosci ; 41(42): 8686-8709, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34475200

RESUMO

Apolipoprotein E (APOE), one of the primary lipoproteins in the brain has three isoforms in humans, APOE2, APOE3, and APOE4. APOE4 is the most well-established risk factor increasing the predisposition for Alzheimer's disease (AD). The presence of the APOE4 allele alone is shown to cause synaptic defects in neurons and recent studies have identified multiple pathways directly influenced by APOE4. However, the mechanisms underlying APOE4-induced synaptic dysfunction remain elusive. Here, we report that the acute exposure of primary cortical neurons or synaptoneurosomes to APOE4 leads to a significant decrease in global protein synthesis. Primary cortical neurons were derived from male and female embryos of Sprague Dawley (SD) rats or C57BL/6J mice. Synaptoneurosomes were prepared from P30 male SD rats. APOE4 treatment also abrogates the NMDA-mediated translation response indicating an alteration of synaptic signaling. Importantly, we demonstrate that both APOE3 and APOE4 generate a distinct translation response which is closely linked to their respective calcium signature. Acute exposure of neurons to APOE3 causes a short burst of calcium through NMDA receptors (NMDARs) leading to an initial decrease in protein synthesis which quickly recovers. Contrarily, APOE4 leads to a sustained increase in calcium levels by activating both NMDARs and L-type voltage-gated calcium channels (L-VGCCs), thereby causing sustained translation inhibition through eukaryotic translation elongation factor 2 (eEF2) phosphorylation, which in turn disrupts the NMDAR response. Thus, we show that APOE4 affects basal and activity-mediated protein synthesis responses in neurons by affecting calcium homeostasis.SIGNIFICANCE STATEMENT Defective protein synthesis has been shown as an early defect in familial Alzheimer's disease (AD). However, this has not been studied in the context of sporadic AD, which constitutes the majority of cases. In our study, we show that Apolipoprotein E4 (APOE4), the predominant risk factor for AD, inhibits global protein synthesis in neurons. APOE4 also affects NMDA activity-mediated protein synthesis response, thus inhibiting synaptic translation. We also show that the defective protein synthesis mediated by APOE4 is closely linked to the perturbation of calcium homeostasis caused by APOE4 in neurons. Thus, we propose the dysregulation of protein synthesis as one of the possible molecular mechanisms to explain APOE4-mediated synaptic and cognitive defects. Hence, the study not only suggests an explanation for the APOE4-mediated predisposition to AD, it also bridges the gap in understanding APOE4-mediated pathology.


Assuntos
Apolipoproteína E4/toxicidade , Sinalização do Cálcio/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Adolescente , Animais , Sinalização do Cálcio/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Homeostase/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neurônios/metabolismo , Biossíntese de Proteínas/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética
2.
Life Sci Alliance ; 7(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38749544

RESUMO

Calcium signaling is integral for neuronal activity and synaptic plasticity. We demonstrate that the calcium response generated by different sources modulates neuronal activity-mediated protein synthesis, another process essential for synaptic plasticity. Stimulation of NMDARs generates a protein synthesis response involving three phases-increased translation inhibition, followed by a decrease in translation inhibition, and increased translation activation. We show that these phases are linked to NMDAR-mediated calcium response. Calcium influx through NMDARs elicits increased translation inhibition, which is necessary for the successive phases. Calcium through L-VGCCs acts as a switch from translation inhibition to the activation phase. NMDAR-mediated translation activation requires the contribution of L-VGCCs, RyRs, and SOCE. Furthermore, we show that IP3-mediated calcium release and SOCE are essential for mGluR-mediated translation up-regulation. Finally, we signify the relevance of our findings in the context of Alzheimer's disease. Using neurons derived from human fAD iPSCs and transgenic AD mice, we demonstrate the dysregulation of NMDAR-mediated calcium and translation response. Our study highlights the complex interplay between calcium signaling and protein synthesis, and its implications in neurodegeneration.


Assuntos
Sinalização do Cálcio , Cálcio , Neurônios , Biossíntese de Proteínas , Receptores de Glutamato Metabotrópico , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos , Cálcio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Humanos , Neurônios/metabolismo , Camundongos Transgênicos , Doença de Alzheimer/metabolismo , Plasticidade Neuronal , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia
3.
Sci Rep ; 12(1): 11317, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790863

RESUMO

Epitranscriptome modifications are crucial in translation regulation and essential for maintaining cellular homeostasis. N6 methyladenosine (m6A) is one of the most abundant and well-conserved epitranscriptome modifications, which is known to play a pivotal role in diverse aspects of neuronal functions. However, the role of m6A modifications with respect to activity-mediated translation regulation and synaptic plasticity has not been studied. Here, we investigated the role of m6A modification in response to NMDAR stimulation. We have consistently observed that 5 min NMDAR stimulation causes an increase in eEF2 phosphorylation. Correspondingly, NMDAR stimulation caused a significant increase in the m6A signal at 5 min time point, correlating with the global translation inhibition. The NMDAR induced increase in the m6A signal is accompanied by the redistribution of the m6A marked RNAs from translating to the non-translating pool of ribosomes. The increased m6A levels are well correlated with the reduced FTO levels observed on NMDAR stimulation. Additionally, we show that inhibition of FTO prevents NMDAR mediated changes in m6A levels. Overall, our results establish RNA-based molecular readout which corelates with the NMDAR-dependent translation regulation which helps in understanding changes in protein synthesis.


Assuntos
Neurônios , Receptores de N-Metil-D-Aspartato , Adenosina/metabolismo , Neurônios/metabolismo , Fosforilação , RNA/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Mol Neurobiol ; 59(12): 7370-7392, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36181660

RESUMO

The Fragile-X Mental Retardation Protein (FMRP) is an RNA binding protein that regulates translation of mRNAs essential for synaptic development and plasticity. FMRP interacts with a specific set of mRNAs, aids in their microtubule-dependent transport and regulates their translation through its association with ribosomes. However, the biochemical role of FMRP's domains in forming neuronal granules and associating with microtubules and ribosomes is currently undefined. We report that the C-terminus domain of FMRP is sufficient to bind to ribosomes akin to the full-length protein. Furthermore, the C-terminus domain alone is essential and responsible for FMRP-mediated neuronal translation repression. However, dendritic distribution of FMRP and its microtubule association is favored by the synergistic combination of FMRP domains rather than individual domains. Interestingly, we show that the phosphorylation of hFMRP at Serine-500 is important in modulating the dynamics of translation by controlling ribosome association. This is a fundamental mechanism governing the size and number of FMRP puncta that contain actively translating ribosomes. Finally through the use of pathogenic mutations, we emphasize the hierarchical contribution of FMRP's domains in translation regulation.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Microtúbulos/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Biossíntese de Proteínas
5.
Stem Cell Reports ; 16(11): 2736-2751, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34678206

RESUMO

Frontotemporal dementia type 3 (FTD3), caused by a point mutation in the charged multivesicular body protein 2B (CHMP2B), affects mitochondrial ultrastructure and the endolysosomal pathway in neurons. To dissect the astrocyte-specific impact of mutant CHMP2B expression, we generated astrocytes from human induced pluripotent stem cells (hiPSCs) and confirmed our findings in CHMP2B mutant mice. Our data provide mechanistic insights into how defective autophagy causes perturbed mitochondrial dynamics with impaired glycolysis, increased reactive oxygen species, and elongated mitochondrial morphology, indicating increased mitochondrial fusion in FTD3 astrocytes. This shift in astrocyte homeostasis triggers a reactive astrocyte phenotype and increased release of toxic cytokines, which accumulate in nuclear factor kappa b (NF-κB) pathway activation with increased production of CHF, LCN2, and C3 causing neurodegeneration.


Assuntos
Astrócitos/metabolismo , Autofagia/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Demência Frontotemporal/genética , Predisposição Genética para Doença/genética , Mutação , Animais , Astrócitos/citologia , Diferenciação Celular/genética , Células Cultivadas , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Demência Frontotemporal/metabolismo , Perfilação da Expressão Gênica/métodos , Glicólise/genética , Homeostase/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA-Seq/métodos , Transdução de Sinais/genética
6.
J Mol Biol ; 431(9): 1743-1762, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30738891

RESUMO

MicroRNAs are small non-coding RNAs regulating mRNA translation. They play a crucial role in regulating homeostasis in neurons, especially in regulating local and stimulation dependent protein synthesis. Since activity-mediated protein synthesis in neurons is critical for memory and cognition, microRNAs have become key players in modulating these processes. Dementia is a broad term used for symptoms involving decline of memory and cognition. Several studies have implicated the dysregulation of microRNAs in many brain diseases like neurodegenerative diseases, neurodevelopmental disorders, brain injuries and dementia. In this review, we give an overview of microRNA-mediated regulation of proteins and cellular processes affected in dementia pathology, hence illustrating the importance of microRNAs in normal functioning. We also focus on a relatively less explored area in dementia pathology-the importance of activity-mediated protein synthesis at the synapse and the role of microRNAs in modulating this. Overall, this review will be helpful in looking at the significance of microRNAs in dementia from the perspective of defective regulation of protein synthesis and synaptic dysfunction.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Demência/genética , MicroRNAs/genética , Neurônios/metabolismo , Sinapses/metabolismo , Proteínas tau/genética , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Autofagia/genética , Demência/metabolismo , Demência/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Mitofagia/genética , Neurônios/patologia , Biossíntese de Proteínas , Sinapses/patologia , Transmissão Sináptica , Proteínas tau/metabolismo
7.
Mol Brain ; 12(1): 65, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291981

RESUMO

Protein synthesis is crucial for maintaining synaptic plasticity and synaptic signalling. Here we have attempted to understand the role of RNA binding proteins, Fragile X Mental Retardation Protein (FMRP) and Moloney Leukemia Virus 10 (MOV10) protein in N-Methyl-D-Aspartate Receptor (NMDAR) mediated translation regulation. We show that FMRP is required for translation downstream of NMDAR stimulation and MOV10 is the key specificity factor in this process. In rat cortical synaptoneurosomes, MOV10 in association with FMRP and Argonaute 2 (AGO2) forms the inhibitory complex on a subset of NMDAR responsive mRNAs. On NMDAR stimulation, MOV10 dissociates from AGO2 and promotes the translation of its target mRNAs. FMRP is required to form MOV10-AGO2 inhibitory complex and to promote translation of MOV10 associated mRNAs. Phosphorylation of FMRP appears to be the potential switch for NMDAR mediated translation and in the absence of FMRP, the distinct translation response to NMDAR stimulation is lost. Thus, FMRP and MOV10 have an important regulatory role in NMDAR mediated translation at the synapse.


Assuntos
DNA Helicases/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Biossíntese de Proteínas , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Animais , Proteínas Argonautas/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Fosforilação , Polirribossomos/metabolismo , Polirribossomos/ultraestrutura , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Regulação para Cima
8.
Stem Cell Res ; 34: 101368, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30634129

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, affecting millions of people worldwide. Mutations in the genes PSEN1, PSEN2 or APP are known to cause familial forms of AD with an early age of onset. In this study, specific pathogenic mutations in the APP gene were introduced into an iPSC line from a healthy individual by the use of CRISPR-Cas9. The study resulted in the generation of two new cell lines, one carrying the V717I APP mutation and one with the KM670/671NL APP mutation.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes Induzidas/patologia , Mutação/genética , Adolescente , Sequência de Bases , Linhagem Celular , Heterozigoto , Humanos , Masculino
9.
Stem Cell Res ; 34: 101349, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660866

RESUMO

Alzheimer's disease (AD) is the most frequent neurodegenerative disease amongst the elderly. The SNPs rs429358 and rs7412 in the APOE gene are the most common risk factor for sporadic AD, and there are three different alleles commonly referred to as APOE-ε2, APOE-ε3 and APOE-ε4. Induced pluripotent stem cells (iPSCs) hold great promise to model AD as such cells can be differentiated in vitro to the required cell type. Here we report the use of CRISPR/Cas9 technology employed on iPSCs from a healthy individual with an APOE-ε3/ε4 genotype to obtain isogenic APOE-ε2/ε2, APOE-ε3/ε3, APOE-ε4/ε4 lines as well as an APOE-knock-out line.


Assuntos
Apolipoproteínas E/genética , Técnicas de Cultura de Células/métodos , Edição de Genes , Técnicas de Inativação de Genes , Células-Tronco Pluripotentes Induzidas/citologia , Mutação/genética , Adolescente , Linhagem Celular , Homozigoto , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa