Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(8): e202312123, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38010868

RESUMO

A critical step in photocatalytic water dissociation is the hole-mediated oxidation reaction. Molecular-level insights into the mechanism of this complex reaction under realistic conditions with high temporal resolution are highly desirable. Here, we use femtosecond time-resolved, surface-specific vibrational sum frequency generation spectroscopy to study the photo-induced reaction directly at the interface of the photocatalyst TiO2 in contact with liquid water at room temperature. Thanks to the inherent surface specificity of the spectroscopic method, we can follow the reaction of solely the interfacial water molecules directly at the interface at timescales on which the reaction takes place. Following the generation of holes at the surface immediately after photoexcitation of the catalyst with UV light, water dissociation occurs on a sub-20 ps timescale. The reaction mechanism is similar at pH 3 and 11. In both cases, we observe the conversion of H2 O into Ti-OH groups and the deprotonation of pre-existing Ti-OH groups. This study provides unique experimental insights into the early steps of the photo-induced dissociation processes at the photocatalyst-water interface, relevant to the design of improved photocatalysts.

2.
Phys Chem Chem Phys ; 25(9): 6847-6856, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36799358

RESUMO

Intermolecular interactions in π-stacked chromophores strongly influence their photophysical properties, and thereby also their function in photonic applications. Mixed electronic and vibrational coupling interactions lead to complex potential energy landscapes with competitive photophysical pathways. Here, we characterize the photoexcited dynamics of the small molecule semiconductor copper pthalocyanine (CuPc) in solution and in thin film, the latter comprising two different π-stacked architectures, α-CuPc and ß-CuPc. In solution, CuPc undergoes ultrafast intersytem crossing (ISC) to the triplet excited state. In the solid state, both α-CuPc and ß-CuPc morphologies exhibit a mixing between Frenkel and charge-transfer excitons (Frenkel-CT mixing). We find that this mixing influences the photophysical properties differently, based on morphology. In addition to ISC, α-CuPc demonstrates symmetry-breaking charge transfer, which furthermore depends on excitation wavelength. This mechanism is not observed in ß-CuPc. These results elucidate how molecular organization mediates the balance of competitive photexcited decay mechanisms in organic semiconductors.

3.
Chemistry ; 28(57): e202201858, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862259

RESUMO

Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.

4.
J Am Chem Soc ; 143(30): 11843-11855, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34296865

RESUMO

Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge transfer states described by spatially separated orbitals, the energies of spin-flip states cannot straightforwardly be predicted as Pauli repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl)pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand's methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues.

5.
Nano Lett ; 20(5): 2993-3002, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32207957

RESUMO

Graphene nanoribbons (GNRs) with atomically precise width and edge structures are a promising class of nanomaterials for optoelectronics, thanks to their semiconducting nature and high mobility of charge carriers. Understanding the fundamental static optical properties and ultrafast dynamics of charge carrier generation in GNRs is essential for optoelectronic applications. Combining THz spectroscopy and theoretical calculations, we report a strong exciton effect with binding energy up to ∼700 meV in liquid-phase-dispersed GNRs with a width of 1.7 nm and an optical band gap of ∼1.6 eV, illustrating the intrinsically strong Coulomb interactions between photogenerated electrons and holes. By tracking the exciton dynamics, we reveal an ultrafast formation of excitons in GNRs with a long lifetime over 100 ps. Our results not only reveal fundamental aspects of excitons in GNRs (strong binding energy and ultrafast exciton formation etc.) but also highlight promising properties of GNRs for optoelectronic devices.

6.
Angew Chem Int Ed Engl ; 57(27): 8316-8320, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29722108

RESUMO

Complex multiple-component semiconductor photocatalysts can be constructed that display enhanced catalytic efficiency via multiple charge and energy transfer, mimicking photosystems in nature. In contrast, the efficiency of single-component semiconductor photocatalysts is usually limited due to the fast recombination of the photogenerated excitons. Here, we report the design of an asymmetric covalent triazine framework as an efficient organic single-component semiconductor photocatalyst. Four different molecular donor-acceptor domains are obtained within the network, leading to enhanced photogenerated charge separation via an intramolecular energy transfer cascade. The photocatalytic efficiency of the asymmetric covalent triazine framework is superior to that of its symmetric counterparts; this was demonstrated by the visible-light-driven formation of benzophosphole oxides from diphenylphosphine oxide and diphenylacetylene.

7.
Phys Chem Chem Phys ; 19(34): 22877-22886, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28812075

RESUMO

LHCII, the major light harvesting antenna from plants, plays a dual role in photosynthesis. In low light it is a light-harvester, while in high light it is a quencher that protects the organism from photodamage. The switching mechanism between these two orthogonal conditions is mediated by protein dynamic disorder and photoprotective energy dissipation. The latter in particular is thought to occur in part via spectroscopically 'dark' states. We searched for such states in LHCII trimers from spinach, at both room temperature and at 77 K. Using 2D electronic spectroscopy, we explored coherent interactions between chlorophylls absorbing on the low-energy side of LHCII, which is the region that is responsible for both light-harvesting and photoprotection. 2D beating frequency maps allow us to identify four frequencies with strong excitonic character. In particular, our results show the presence of a low-lying state that is coupled to a low-energy excitonic state. We assign this to a mixed excitonic-charge transfer state involving the state with charge separation within the Chl a603-b609 heterodimer, borrowing some dipole strength from the Chl a602-a603 excited states. Such a state may play a role in photoprotection, in conjunction with specific and environmentally controlled realizations of protein dynamic disorder. Our identification and assignment of the coherences observed in the 2D frequency maps suggests that the structure of exciton states as well as a mixing of the excited and charge-transfer states is affected by coupling of these states to resonant vibrations in LHCII.

8.
Biophys J ; 108(5): 1047-56, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762317

RESUMO

In the major peripheral plant light-harvesting complex LHCII, excitation energy is transferred between chlorophylls along an energetic cascade before it is transmitted further into the photosynthetic assembly to be converted into chemical energy. The efficiency of these energy transfer processes involves a complicated interplay of pigment-protein structural reorganization and protein dynamic disorder, and the system must stay robust within the fluctuating protein environment. The final, lowest energy site has been proposed to exist within a trimeric excitonically coupled chlorophyll (Chl) cluster, comprising Chls a610-a611-a612. We studied an LHCII monomer with a site-specific mutation resulting in the loss of Chls a611and a612, and find that this mutant exhibits two predominant overlapping fluorescence bands. From a combination of bulk measurements, single-molecule fluorescence characterization, and modeling, we propose the two fluorescence bands originate from differing conditions of exciton delocalization and localization realized in the mutant. Disruption of the excitonically coupled terminal emitter Chl trimer results in an increased sensitivity of the excited state energy landscape to the disorder induced by the protein conformations. Consequently, the mutant demonstrates a loss of energy transfer efficiency. On the contrary, in the wild-type complex, the strong resonance coupling and correspondingly high degree of excitation delocalization within the Chls a610-a611-a612 cluster dampens the influence of the environment and ensures optimal communication with neighboring pigments. These results indicate that the terminal emitter trimer is thus an essential design principle for maintaining the efficient light-harvesting function of LHCII in the presence of protein disorder.


Assuntos
Proteínas de Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Fluorescência , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Mutação , Multimerização Proteica
9.
Biochim Biophys Acta ; 1837(9): 1507-13, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24576451

RESUMO

Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and thus require fast and strong response to changing light conditions. We performed transient absorption spectroscopy on FCPa, the main light-harvesting antenna from the diatom Cyclotella meneghiniana, in the unquenched and quenched state. Our results show that in quenched FCPa two quenching channels are active and are characterized by differing rate constants and distinct spectroscopic signatures. One channel is associated with a faster quenching rate (16ns⁻¹) and virtually no difference in spectral shape compared to the bulk unquenched chlorophylls, while a second channel is associated with a slower quenching rate (2.7ns⁻¹) and exhibits an increased population of red-emitting states. We discuss the origin of the two processes in the context of the models proposed for the regulation of photosynthetic light-harvesting. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy.


Assuntos
Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Fotossíntese , Proteínas de Ligação à Clorofila/química , Análise Espectral
10.
J Phys Chem B ; 128(7): 1760-1770, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38340068

RESUMO

We report the photophysical properties of a molecular folda-dimer system PDI-AnEt2-PDI, where the electron-donating N,N-diethylaniline (AnEt2) moiety bridges two electron-accepting perylene diimide (PDI) chromophores. The conformationally flexible PDI-AnEt2-PDI adopts either an open (two PDIs far apart) or folded (two PDIs within π-stacking distance) conformation, depending on the solvent environment. We characterized the photoinduced charge separation dynamics of both open and folded forms in solvents of varying polarity. The open form undergoes charge separation to give PDI•--AnEt2•+-PDI (Bridge electron transfer) independent of solvent polarity. The folded form exhibits two charge separation photoproducts, yielding both PDI•--AnEt2•+-PDI and PDI•--AnEt2-PDI•+, the latter of which is formed via symmetry-breaking charge separation (SBCS) between the two π-stacked PDI chromophores. Our results further indicate that the conformational flexibility of the folda-dimer leads to unexpected excimer formation in some open form conditions. In contrast, no excimer formation is observed in the folded form, indicating that this geometry preferentially yields the SBCS instead. Our results provide insight into how conformationally flexible folda-dimer systems can be designed and built to tune competitive photophysical pathways.

11.
Nat Chem ; 16(5): 827-834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332331

RESUMO

Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.

12.
J Am Chem Soc ; 135(39): 14701-12, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24011336

RESUMO

The crystal structure of N,N-bis(n-octyl)-2,5,8,11-tetraphenylperylene-3,4:9,10-bis(dicarboximide), 1, obtained by X-ray diffraction reveals that 1 has a nearly planar perylene core and π-π stacks at a 3.5 Å interplanar distance in well-separated slip-stacked columns. Theory predicts that slip-stacked, π-π-stacked structures should enhance interchromophore electronic coupling and thus favor singlet exciton fission. Photoexcitation of vapor-deposited polycrystalline 188 nm thick films of 1 results in a 140 ± 20% yield of triplet excitons ((3*)1) in τ(SF) = 180 ± 10 ps. These results illustrate a design strategy for producing perylenediimide and related rylene derivatives that have the optimized interchromophore electronic interactions which promote high-yield singlet exciton fission for potentially enhancing organic solar cell performance and charge separation in systems for artificial photosynthesis.

13.
J Phys Chem C Nanomater Interfaces ; 127(20): 9690-9698, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37255925

RESUMO

Temperature measurements at the nanoscale are vital for the application of plasmonic structures in medical photothermal therapy and materials science but very challenging to realize in practice. In this work, we exploit a combination of surface-enhanced Raman spectroscopy together with the characteristic temperature dependence of the Raman peak maxima observed in ß-phase copper phthalocyanine (ß-CuPc) to measure the surface temperature of plasmonic gold nanoparticles under laser irradiation. We begin by measuring the temperature-dependent Raman shifts of the three most prominent modes of ß-CuPc films coated on an array of Au nanodisks over a temperature range of 100-500 K. We then use these calibration curves to determine the temperature of an array of Au nanodisks irradiated with varying laser powers. The extracted temperatures agree quantitatively with the ones obtained via numerical modeling of electromagnetic and thermodynamic properties of the irradiated array. Thin films of ß-CuPc display low extinction coefficients in the blue-green region of the visible spectrum as well as exceptional thermal stability, allowing a wide temperature range of operation of our Raman thermometer, with minimal optical distortion of the underlying structures. Thanks to the strong thermal response of the Raman shifts in ß-CuPc, our work opens the opportunity to investigate photothermal effects at the nanoscale in real time.

14.
J Am Chem Soc ; 134(1): 386-97, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22111926

RESUMO

The photophysics and morphology of thin films of N,N-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) (1) and the 1,7-diphenyl (2) and 1,7-bis(3,5-di-tert-butylphenyl) (3) derivatives blended with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) were studied for their potential use as photoactive layers in organic photovoltaic (OPV) devices. Increasing the steric bulk of the 1,7-substituents of the perylene-3,4:9,10-bis(dicarboximide) (PDI) impedes aggregation in the solid state. Film characterization data using both atomic force microscopy and X-ray diffraction showed that decreasing the PDI aggregation by increasing the steric bulk in the order 1 < 2 < 3 correlates with a decrease in the density/size of crystalline TIPS-Pn domains. Transient absorption spectroscopy was performed on ~100 nm solution-processed TIPS-Pn:PDI blend films to characterize the charge separation dynamics. These results showed that selective excitation of the TIPS-Pn results in competition between ultrafast singlet fission ((1*)TIPS-Pn + TIPS-Pn → 2 (3*)TIPS-Pn) and charge transfer from (1*)TIPS-Pn to PDIs 1-3. As the blend films become more homogeneous across the series TIPS-Pn:PDI 1 → 2 → 3, charge separation becomes competitive with singlet fission. Ultrafast charge separation forms the geminate radical ion pair state (1)(TIPS-Pn(+•)-PDI(-•)) that undergoes radical pair intersystem crossing to form (3)(TIPS-Pn(+•)-PDI(-•)), which then undergoes charge recombination to yield either (3*)PDI or (3*)TIPS-Pn. Energy transfer from (3*)PDI to TIPS-Pn also yields (3*)TIPS-Pn. These results show that multiple pathways produce the (3*)TIPS-Pn state, so that OPV design strategies based on this system must utilize this triplet state for charge separation.

15.
Dalton Trans ; 51(17): 6519-6525, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35420105

RESUMO

The discovery of the highly NIR-luminescent molecular ruby [Cr(ddpd)2]3+ (ddpd = N,N'-dimethyl-N,N'-dipyridin-2-ylpyridine-2,6-diamine) has been a milestone in the development of earth-abundant luminophors and has led to important new impulses in the field of spin-flip emitters. Its favourable optical properties such as a high photoluminescence quantum yield and long excited state lifetime are traced back to a remarkable excited state landscape which has been investigated in great detail. This article summarises the results of these studies with the aim to create a coherent picture of the excited state ordering and the ultrafast as well as long-timescale dynamics. Additional experimental data is provided to fill in gaps left by previous reports.

16.
Adv Sci (Weinh) ; 9(19): e2200056, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35253396

RESUMO

Excellent performance has been reported for organic light-emitting diodes (OLEDs) based on small molecule emitters that exhibit thermally activated delayed fluorescence. However, the necessary vacuum processing makes the fabrication of large-area devices based on these emitters cumbersome and expensive. Here, the authors present high performance OLEDs, based on novel, TADF polymers that can be readily processed from a solution. These polymers are based on the acridine-benzophenone donor-acceptor motif as main-chain TADF chromophores, linked by various conjugated and non-conjugated spacer moieties. The authors' extensive spectroscopic and electronic analysis shows that in particular in case of alkyl spacers, the properties and performance of the monomeric TADF chromophores are virtually left unaffected by the polymerization. They present efficient solution-processed OLEDs based on these TADF polymers, diluted in oligostyrene as a host. The devices based on the alkyl spacer-based TADF polymers exhibit external quantum efficiencies (EQEs) ≈12%, without any outcoupling-enhancing measures. What's more, the EQE of these devices does not drop substantially upon diluting the polymer down to only ten weight percent of active material. In contrast, the EQE of devices based on the monomeric chromophore show significant losses upon dilution due to loss of charge percolation.

17.
Mater Horiz ; 9(10): 2633-2643, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35997011

RESUMO

Controlling crystal growth and reducing the number of grain boundaries are crucial to maximize the charge carrier transport in organic-inorganic perovskite field-effect transistors (FETs). Herein, the crystallization and growth kinetics of a Sn(II)-based 2D perovskite, using 2-thiopheneethylammonium (TEA) as the organic cation spacer, were effectively regulated by the hot-casting method. With increasing crystalline grain size, the local charge carrier mobility is found to increase moderately from 13 cm2 V-1 s-1 to 16 cm2 V-1 s-1, as inferred from terahertz (THz) spectroscopy. In contrast, the FET operation parameters, including mobility, threshold voltage, hysteresis, and subthreshold swing, improve substantially with larger grain size. The optimized 2D (TEA)2SnI4 transistor exhibits hole mobility of up to 0.34 cm2 V-1 s-1 at 295 K and a higher value of 1.8 cm2 V-1 s-1 at 100 K. Our work provides an important insight into the grain engineering of 2D perovskites for high-performance FETs.

18.
J Phys Condens Matter ; 33(25)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33845472

RESUMO

The use of biomolecules as capping and reducing agents in the synthesis of metallic nanoparticles constitutes a promising framework to achieve desired functional properties with minimal toxicity. The system's complexity and the large number of variables involved represent a challenge for theoretical and experimental investigations aiming at devising precise synthesis protocols. In this work, we use L-asparagine (Asn), an amino acid building block of large biomolecular systems, to synthesise gold nanoparticles (AuNPs) in aqueous solution at controlled pH. The use of Asn offers a primary system that allows us to understand the role of biomolecules in synthesising metallic nanoparticles. Our results indicate that AuNPs synthesised in acidic (pH 6) and basic (pH 9) environments exhibit somewhat different morphologies. We investigate these AuNPs via Raman scattering experiments and classical molecular dynamics simulations of zwitterionic and anionic Asn states adsorbing on (111)-, (100)-, (110)-, and (311)-oriented gold surfaces. A combined analysis suggests that the underlying mechanism controlling AuNPs geometry correlates with amine's preferential adsorption over ammonium groups, enhanced upon increasing pH. Our simulations reveal that Asn (both zwitterionic and anionic) adsorption on gold (111) is essentially different from adsorption on more open surfaces. Water molecules strongly interact with the gold face-centred-cubic lattice and create traps, on the more open surfaces, that prevent the Asn from diffusing. These results indicate that pH is a relevant parameter in green-synthesis protocols with the capability to control the nanoparticle's geometry, and pave the way to computational studies exploring the effect of water monolayers on the adsorption of small molecules on wet gold surfaces.


Assuntos
Asparagina , Ouro , Nanopartículas Metálicas , Asparagina/química , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Água
19.
Adv Mater ; 33(39): e2101844, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34365677

RESUMO

Persistent luminescence from triplet excitons in organic molecules is rare, as fast non-radiative deactivation typically dominates over radiative transitions. This work demonstrates that the substitution of a hydrogen atom in a derivative of phenanthroimidazole with an N-phenyl ring can substantially stabilize the excited state. This stabilization converts an organic material without phosphorescence emission into a molecular system exhibiting efficient and ultralong afterglow phosphorescence at room temperature. Results from systematic photophysical investigations, kinetic modeling, excited-state dynamic modeling, and single-crystal structure analysis identify that the long-lived triplets originate from a reduction of intrinsic non-radiative molecular relaxations. Further modification of the N-phenyl ring with halogen atoms affects the afterglow lifetime and quantum yield. As a proof-of-concept, an anticounterfeiting device is demonstrated with a time-dependent Morse code feature for data encryption based on these emitters. A fundamental design principle is outlined to achieve long-lived and emissive triplet states by suppressing intrinsic non-radiative relaxations in the form of molecular vibrations or rotations.

20.
J Phys Chem B ; 124(49): 11123-11132, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33236901

RESUMO

Biohybrid photoelectrochemical systems in photovoltaic or biosensor applications have gained considerable attention in recent years. While the photoactive proteins engaged in such systems usually maintain an internal charge separation quantum yield of nearly 100%, the subsequent steps of electron and hole transfer beyond the protein often limit the overall system efficiency and their kinetics remain largely uncharacterized. To reveal the dynamics of one of such charge-transfer reactions, we report on the reduction of Rhodobacter sphaeroides reaction centers (RCs) by Os-complex-modified redox polymers (P-Os) characterized using transient absorption spectroscopy. RCs and P-Os were mixed in buffered solution in different molar ratios in the presence of a water-soluble quinone as an electron acceptor. Electron transfer from P-Os to the photoexcited RCs could be described by a three-exponential function, the fastest lifetime of which was on the order of a few microseconds, which is a few orders of magnitude faster than the internal charge recombination of RCs with fully separated charge. This was similar to the lifetime for the reduction of RCs by their natural electron donor, cytochrome c2. The rate of electron donation increased with increasing ratio of polymer to protein concentrations. It is proposed that P-Os and RCs engage in electrostatic interactions to form complexes, the sizes of which depend on the polymer-to-protein ratio. Our findings throw light on the processes within hydrogel-based biophotovoltaic devices and will inform the future design of materials optimally suited for this application.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Rhodobacter sphaeroides , Transporte de Elétrons , Elétrons , Cinética , Oxirredução , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Polímeros , Rhodobacter sphaeroides/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa