RESUMO
The increase in flying time of unmanned aerial vehicles (UAV) is a relevant and difficult task for UAV designers. It is especially important in such tasks as monitoring, mapping, or signal retranslation. While the majority of research is concentrated on increasing the battery capacity, it is also important to utilize natural renewable energy sources, such as solar energy, thermals, etc. This article proposed a method for the automatic recognition of cumuliform clouds. Practical application of this method allows diverting of an unmanned aerial vehicle towards the identified cumuliform cloud and improving its probability of flying into a thermal flow, thus increasing the flight time of the UAV, as is performed by glider and paraglider pilots. The proposed method is based on the application of Hough transform and Canny edge detector methods, which have not been used for such a task before. For testing the proposed method a dataset of different clouds was generated and marked by experts. The achieved average accuracy of 87% on the unbalanced dataset demonstrates the practical applicability of the proposed method for detecting thermals related to cumuliform clouds. The article also provides the concept of VilniusTech developed UAV, implementing the proposed method.
RESUMO
Automated data analysis solutions are very dependent on data and its quality. The possibility of assigning more than one class to the same data item is one of the specificities that need to be taken into account. There are no solutions, dedicated to Lithuanian text data classification that helps to assign more than one class to data item. In this paper, a new combined approach has been proposed for multilabel text data classification for text analysis. The main aim of the proposed approach is to improve the accuracy of traditional classification algorithms by incorporating the results obtained using similarity measures. The experimental investigation has been performed using the financial news multilabel text data in the Lithuanian language. Data have been collected from four public websites and classified by experts into ten classes manually, where each of the data items has no more than two classes. The results of five commonly used algorithms have been compared for dataset classification: the support vector machine, multinomial naive Bayes, k-nearest neighbours, decision trees, linear and discriminant analysis. In addition, two similarity measures have been compared: the cosine distance and the dice coefficient. Research has shown that the best results have been obtained using the cosine similarity distance and the multinomial naive Bayes classifier. The proposed approach combines the results of these two methods. Research on different cases of the proposed approach indicated the peculiarities of its application. At the same time, the combined approach allowed us to obtain a statistically significant increase in global accuracy.