Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660801

RESUMO

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/genética
2.
Cell Commun Signal ; 22(1): 23, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195510

RESUMO

Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear. Herein, RNA-seq was performed on fluorescence-activated cell sorted endothelial cells (ECs), pericytes, and neuroglia from CCM lesions and non-lesional brain tissue controls. Differentially Expressed Gene (DEG), pathway and Ligand-Receptor (LR) analyses were performed to characterize the dysfunctional genes of respective cell types within CCMs. Common DEGs among all three cell types were related to inflammation and endothelial-to-mesenchymal transition (EndMT). DEG and pathway analyses supported a role of lesional ECs in dysregulated angiogenesis and increased permeability. VEGFA was particularly upregulated in pericytes. Further pathway and LR analyses identified vascular endothelial growth factor A/ vascular endothelial growth factor receptor 2 signaling in lesional ECs and pericytes that would result in increased angiogenesis. Moreover, lesional pericytes and neuroglia predominantly showed DEGs and pathways mediating the immune response. Further analyses of cell specific gene alterations in CCM endorsed potential contribution to EndMT, coagulation, and a hypoxic microenvironment. Taken together, these findings motivate mechanistic hypotheses regarding non-endothelial contributions to lesion pathobiology and may lead to novel therapeutic targets. Video Abstract.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Fator A de Crescimento do Endotélio Vascular , Humanos , Fator A de Crescimento do Endotélio Vascular/genética , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Células Endoteliais , Perfilação da Expressão Gênica , Transcriptoma , Microambiente Tumoral
3.
Circ Res ; 131(11): 909-925, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36285625

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) are neurovascular lesions caused by loss of function mutations in 1 of 3 genes, including KRIT1 (CCM1), CCM2, and PDCD10 (CCM3). CCMs affect ≈1 out of 200 children and adults, and no pharmacologic therapy is available. CCM lesion count, size, and aggressiveness vary widely among patients of similar ages with the same mutation or even within members of the same family. However, what determines the transition from quiescent lesions into mature and active (aggressive) CCM lesions is unknown. METHODS: We use genetic, RNA-sequencing, histology, flow cytometry, and imaging techniques to report the interaction between CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils (CCM endothelium, astrocytes, leukocytes, microglia/macrophages, neutrophils interaction) during the pathogenesis of CCMs in the brain tissue. RESULTS: Expression profile of astrocytes in adult mouse brains using translated mRNAs obtained from the purification of EGFP (enhanced green fluorescent protein)-tagged ribosomes (Aldh1l1-EGFP/Rpl10a) in the presence or absence of CCM lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) identifies a novel gene signature for neuroinflammatory astrocytes. CCM-induced reactive astrocytes have a neuroinflammatory capacity by expressing genes involved in angiogenesis, chemotaxis, hypoxia signaling, and inflammation. RNA-sequencing analysis on RNA isolated from brain endothelial cells in chronic Pdcd10BECKO mice (CCM endothelium), identified crucial genes involved in recruiting inflammatory cells and thrombus formation through chemotaxis and coagulation pathways. In addition, CCM endothelium was associated with increased expression of Nlrp3 and Il1b. Pharmacological inhibition of NLRP3 (NOD [nucleotide-binding oligomerization domain]-' LRR [leucine-rich repeat]- and pyrin domain-containing protein 3) significantly decreased inflammasome activity as assessed by quantification of a fluorescent indicator of caspase-1 activity (FAM-FLICA [carboxyfluorescein-fluorochrome-labeled inhibitors of caspases] caspase-1) in brain endothelial cells from Pdcd10BECKO in chronic stage. Importantly, our results support the hypothesis of the crosstalk between astrocytes and CCM endothelium that can trigger recruitment of inflammatory cells arising from brain parenchyma (microglia) and the peripheral immune system (leukocytes) into mature active CCM lesions that propagate lesion growth, immunothrombosis, and bleedings. Unexpectedly, partial or total loss of brain endothelial NF-κB (nuclear factor κB) activity (using Ikkbfl/fl mice) in chronic Pdcd10BECKO mice does not prevent lesion genesis or neuroinflammation. Instead, this resulted in a trend increase in the number of lesions and immunothrombosis, suggesting that therapeutic approaches designed to target inflammation through endothelial NF-κB inhibition may contribute to detrimental side effects. CONCLUSIONS: Our study reveals previously unknown links between neuroinflammatory astrocytes and inflamed CCM endothelium as contributors that trigger leukocyte recruitment and precipitate immunothrombosis in CCM lesions. However, therapeutic approaches targeting brain endothelial NF-κB activity may contribute to detrimental side effects.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas Proto-Oncogênicas/genética , Inflamação/genética , Inflamação/patologia , Caspases , RNA
4.
J Immunol ; 208(6): 1378-1388, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35197328

RESUMO

Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLß2, α4ß1, and α4ß7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLß2, α4ß1, and α4ß7 integrin activation in CD4+ T cells.


Assuntos
Talina , Proteínas rap1 de Ligação ao GTP , Animais , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Integrinas/metabolismo , Camundongos , Talina/genética , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
5.
Trop Anim Health Prod ; 56(3): 117, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568238

RESUMO

Cereals such as triticale may contain high levels of xylans and arabinoxylans, limiting its use in diets since they act as anti-nutritional factors. The objective was to evaluate the effects of the enzyme xylanase included in triticale-based diets on productive performance, digestibility, carcass traits and meat quality in growing-finishing rabbits. Eighty rabbits (New Zealand X California breed), 35 days old, with an average initial live weight of 821 ± 26 g, were used. Twenty animals for treatment were used in each one of the fourth experimental treatments: 0, 4000, 8000 and 12,000 XU/kg of xylanase inclusion (XilaBlend 6X). The rabbits were fed ad libitum and fecal excretion was collected on days 7, 14, 21, 28 and 35 of the experimental period. At the end of the experimental period, the rabbits were slaughtered and carcass characteristics and meat quality were measured. A higher (P < 0.05) live weight was observed in rabbits fed diets with the addition of xylanase enzyme on days 4 and 7 of the experimental period. On the other hand, in the average total tract digestibility of organic matter, no significant difference was observed, similar to what occurred in the carcass traits and nutritional quality of the meat. The inclusion of 8000 XU/kg of xylanase enzyme provided the best values of apparent digestibility of total tract protein and dry matter on the finished stage of rabbits.


Assuntos
Triticale , Animais , Coelhos , Melhoramento Vegetal , Dieta/veterinária , Suplementos Nutricionais , Carne
6.
BMC Genomics ; 24(1): 351, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365500

RESUMO

BACKGROUND: The development of the brain requires precise coordination of molecular processes across many cell-types. Underpinning these events are gene expression programs which require intricate regulation by non-coding regulatory sequences known as enhancers. In the context of the developing brain, transcribed enhancers (TEs) regulate temporally-specific expression of genes critical for cell identity and differentiation. Transcription of non-coding RNAs at active enhancer sequences, known as enhancer RNAs (eRNAs), is tightly associated with enhancer activity and has been correlated with target gene expression. TEs have been characterized in a multitude of developing tissues, however their regulatory role has yet to be described in the context of embryonic and early postnatal brain development. In this study, eRNA transcription was analyzed to identify TEs active during cerebellar development, as a proxy for the developing brain. Cap Analysis of Gene Expression followed by sequencing (CAGE-seq) was conducted at 12 stages throughout embryonic and early postnatal cerebellar development. RESULTS: Temporal analysis of eRNA transcription identified clusters of TEs that peak in activity during either embryonic or postnatal times, highlighting their importance for temporally specific developmental events. Functional analysis of putative target genes identified molecular mechanisms under TE regulation revealing that TEs regulate genes involved in biological processes specific to neurons. We validate enhancer activity using in situ hybridization of eRNA expression from TEs predicted to regulate Nfib, a gene critical for cerebellar granule cell differentiation. CONCLUSIONS: The results of this analysis provide a valuable dataset for the identification of cerebellar enhancers and provide insight into the molecular mechanisms critical for brain development under TE regulation. This dataset is shared with the community through an online resource ( https://goldowitzlab.shinyapps.io/trans-enh-app/ ).


Assuntos
Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Transcrição Gênica , Análise de Sequência de RNA , Encéfalo/embriologia , Encéfalo/metabolismo , Animais , Camundongos , Elementos Facilitadores Genéticos , RNA/genética
7.
FASEB J ; 36(12): e22629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36349990

RESUMO

ß1 integrins are important in blood vessel formation and function, finely tuning the adhesion of endothelial cells to each other and to the extracellular matrix. The role of integrins in the vascular disease, cerebral cavernous malformation (CCM) has yet to be explored in vivo. Endothelial loss of the gene KRIT1 leads to brain microvascular defects, resulting in debilitating and often fatal consequences. We tested administration of a monoclonal antibody that enforces the active ß1 integrin conformation, (clone 9EG7), on a murine neonatal CCM mouse model, Krit1flox/flox ;Pdgfb-iCreERT2 (Krit1ECKO ), and on KRIT1-silenced human umbilical vein endothelial cells (HUVECs). In addition, endothelial deletion of the master regulator of integrin activation, Talin 1 (Tln1), in Krit1ECKO mice was performed to assess the effect of completely blocking endothelial integrin activation on CCM. Treatment with 9EG7 reduced lesion burden in the Krit1ECKO model and was accompanied by a strong reduction in the phosphorylation of the ROCK substrate, myosin light chain (pMLC), in both retina and brain endothelial cells. Treatment of KRIT1-silenced HUVECs with 9EG7 in vitro stabilized cell-cell junctions. Overnight treatment of HUVECs with 9EG7 resulted in significantly reduced total surface expression of ß1 integrin, which was associated with reduced pMLC levels, supporting our in vivo findings. Genetic blockade of integrin activation by Tln1ECKO enhanced bleeding and did not reduce CCM lesion burden in Krit1ECKO mice. In sum, targeting ß1 integrin with an activated-specific antibody reduces acute murine CCM lesion development, which we found to be associated with suppression of endothelial ROCK activity.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Animais , Humanos , Camundongos , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Integrina beta1/metabolismo , Anticorpos Monoclonais/metabolismo , Integrinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
8.
Circ Res ; 129(1): 195-215, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166073

RESUMO

Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.


Assuntos
Veias Cerebrais/anormalidades , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Mutação , Animais , Veias Cerebrais/metabolismo , Predisposição Genética para Doença , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Humanos , Fenótipo , Transdução de Sinais
9.
Blood ; 136(10): 1180-1190, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32518959

RESUMO

Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin ß cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a greater contribution than F0 in model systems. Here we generated mice bearing point mutations, which block Rap1 binding without affecting talin-1 expression, in either the talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains (R35E,R118E), which were embryonic lethal. Loss of the Rap1-talin-1 F1 interaction in platelets markedly decreases talin-1-mediated activation of platelet ß1- and ß3-integrins. Integrin activation and platelet aggregation in mice whose platelets express only talin-1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion, and surface exposure of phosphatidylserine, loss of the Rap1-talin-1 interaction in talin-1(R35E, R118E) platelets had little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that regulates platelet integrin activation in hemostasis.


Assuntos
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Mutação Puntual , Talina/fisiologia , Trombopoese , Proteínas rap de Ligação ao GTP/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Feminino , Integrina beta1/genética , Integrina beta3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Agregação Plaquetária , Domínios Proteicos , Transdução de Sinais
10.
Cerebellum ; 21(4): 606-614, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35857265

RESUMO

This report presents the first comprehensive database that specifically compiles genes critical for cerebellar development and function. The Cerebellar Gene Database details genes that, when perturbed in mouse models, result in a cerebellar phenotype according to available data from both Mouse Genome Informatics and PubMed, as well as references to the corresponding studies for further examination. This database also offers a compilation of human genetic disorders with a cerebellar phenotype and their associated gene information from the Online Mendelian Inheritance in Man (OMIM) database. By comparing and contrasting the mouse and human datasets, we observe that only a small proportion of human mutant genes with a cerebellar phenotype have been studied in mouse knockout models. Given the highly conserved nature between mouse and human genomes, this surprising finding highlights how mouse genetic models can be more frequently employed to elucidate human disease etiology. On the other hand, many mouse genes identified in the present study that are known to lead to a cerebellar phenotype when perturbed have not yet been found to be pathogenic in the cerebellum of humans. This database furthers our understanding of human cerebellar disorders with yet-to-be-identified genetic causes. It is our hope that this gene database will serve as an invaluable tool for gathering background information, generating hypotheses, and facilitating translational research endeavors. Moreover, we encourage continual inputs from the research community in making this compilation a living database, one that remains up-to-date with the advances in cerebellar research.


Assuntos
Cerebelo , Bases de Dados Genéticas , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Fenótipo
11.
World J Surg ; 46(2): 322-329, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34674002

RESUMO

BACKGROUND: This research adopted a care protocol from high-income countries in a level II/III hospital in a middle-income country to decrease morbidity and mortality associated with gastroschisis. METHODS: We established a multidisciplinary protocol to treat patients with gastroschisis prospectively from November 2012 to November 2018. This included prenatal diagnosis, presence of a neonatologist and pediatric surgeon at birth, and either performing primary closure on the patients with an Apgar score of 8/9, mild serositis, and no breathing difficulty or placing a preformed silo, when unable to fulfill these criteria, under sedation and analgesia (no intubation) in the operating room or at the patients' bedside. The subsequent management took place in the neonatal intensive care unit. The data were analyzed through the Mann-Whitney and Student's t-distribution for the two independent samples; the categorical variables were analyzed through a chi-square distribution or Fisher's exact test. RESULTS: In total, 55 patients were included in the study: 33 patients (60%) were managed with a preformed silo, whereas 22 patients (40%) underwent primary closure. Prenatal diagnosis (P = 0.02), birth at the main hospital (P = 0.02), and the presence of a pediatric surgeon at birth (P = 0.04) were associated with successful primary closure. The primary closure group had fewer fasting days (P < 0.001) and a shorter neonatal intensive care unit length of stay (P = 0.025). The survival rate was 92.7% (51 patients). CONCLUSION: The treatment model modified to fit the means of our hospital proved successful.


Assuntos
Gastrosquise , Criança , Feminino , Gastrosquise/diagnóstico , Gastrosquise/cirurgia , Humanos , Recém-Nascido , Gravidez , Estudos Retrospectivos , Resultado do Tratamento
12.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684848

RESUMO

Driving event detection and driver behavior recognition have been widely explored for many purposes, including detecting distractions, classifying driver actions, detecting kidnappings, pricing vehicle insurance, evaluating eco-driving, and managing shared and leased vehicles. Some systems can recognize the main driving events (e.g., accelerating, braking, and turning) by using in-vehicle devices, such as inertial measurement unit (IMU) sensors. In general, feature extraction is a commonly used technique to obtain robust and meaningful information from the sensor signals to guarantee the effectiveness of the subsequent classification algorithm. However, a general assessment of deep neural networks merits further investigation, particularly regarding end-to-end models based on Convolutional Neural Networks (CNNs), which combine two components, namely feature extraction and the classification parts. This paper primarily explores supervised deep-learning models based on 1D and 2D CNNs to classify driving events from the signals of linear acceleration and angular velocity obtained with the IMU sensors of a smartphone placed in the instrument panel of the vehicle. Aggressive and non-aggressive behaviors can be recognized by monitoring driving events, such as accelerating, braking, lane changing, and turning. The experimental results obtained are promising since the best classification model achieved accuracy values of up to 82.40%, and macro- and micro-average F1 scores, respectively, equal to 75.36% and 82.40%, thus, demonstrating high performance in the classification of driving events.


Assuntos
Condução de Veículo , Redes Neurais de Computação , Algoritmos , Smartphone
13.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012583

RESUMO

The European mink (Mustela lutreola) is one of Europe's most endangered species, and it is on the brink of extinction in the Iberian Peninsula. The species' precarious situation requires the application of new ex situ conservation methodologies that complement the existing ex situ and in situ conservation measures. Here, we report for the first time the establishment of a biobank for European mink mesenchymal stem cells (emMSC) and oocytes from specimens found dead in the Iberian Peninsula, either free or in captivity. New emMSC lines were isolated from different tissues: bone marrow (emBM-MSC), oral mucosa (emOM-MSc), dermal skin (emDS-MSC), oviduct (emO-MSc), endometrium (emE-MSC), testicular (emT-MSC), and adipose tissue from two different adipose depots: subcutaneous (emSCA-MSC) and ovarian (emOA-MSC). All eight emMSC lines showed plastic adhesion, a detectable expression of characteristic markers of MSCs, and, when cultured under osteogenic and adipogenic conditions, differentiation capacity to these lineages. Additionally, we were able to keep 227 Cumulus-oocyte complexes (COCs) in the biobank, 97 of which are grade I or II. The European mink MSC and oocyte biobank will allow for the conservation of the species' genetic variability, the application of assisted reproduction techniques, and the development of in vitro models for studying the molecular mechanisms of infectious diseases that threaten the species' precarious situation.


Assuntos
Células-Tronco Mesenquimais , Vison , Animais , Diferenciação Celular , Células Cultivadas , Espécies em Perigo de Extinção , Feminino , Vison/genética , Oócitos , Osteogênese
14.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35742872

RESUMO

Although the European rabbit is an "endangered" species and a notorious biological model, the analysis and comparative characterization of new tissue sources of rabbit mesenchymal stem cells (rMSCs) have not been well addressed. Here, we report for the first time the isolation and characterization of rMSCs derived from an animal belonging to a natural rabbit population within the native region of the species. New rMSC lines were isolated from different tissues: oral mucosa (rOM-MSC), dermal skin (rDS-MSC), subcutaneous adipose tissue (rSCA-MSC), ovarian adipose tissue (rOA-MSC), oviduct (rO-MSC), and mammary gland (rMG-MSC). The six rMSC lines showed plastic adhesion with fibroblast-like morphology and were all shown to be positive for CD44 and CD29 expression (characteristic markers of MSCs), and negative for CD34 or CD45 expression. In terms of pluripotency features, all rMSC lines expressed NANOG, OCT4, and SOX2. Furthermore, all rMSC lines cultured under osteogenic, chondrogenic, and adipogenic conditions showed differentiation capacity. In conclusion, this study describes the isolation and characterization of new rabbit cell lines from different tissue origins, with a clear mesenchymal pattern. We show that rMSC do not exhibit differences in terms of morphological features, expression of the cell surface, and intracellular markers of pluripotency and in vitro differentiation capacities, attributable to their tissue of origin.


Assuntos
Células-Tronco Mesenquimais , Adipogenia , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Coelhos
15.
J Cell Physiol ; 236(2): 1054-1067, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32617972

RESUMO

Mesenchymal stem cells (MSCs) have a great potential in regenerative medicine because of their multipotential and immunoregulatory capacities, while in early pregnancy they could participate in the immunotolerance of the mother towards the embryo. Peripheral blood constitutes an accessible source of MSCs. We successfully isolated peripheral blood MSC (pbMSCs) lines, with or without previous bone marrow mobilization. All pbMSCs lines obtained in both conditions presented classical MSC markers and properties, alkaline phosphatase activity and multipotent capacity to differentiate among adipogenic, osteogenic or chondrogenic lineages, and suppressed the proliferation of T cells. pbMSCs showed migratory capacity without cytokine stimulation while increasing their migration rate in the presence of inflammatory or embryo implantation stimuli. Interestingly, in contrast to MSCs derived from endometrial tissue, three pbMSCs lines also showed increased migration towards the IFN-τ implantation cytokine. Moreover, the secretome produced by an early implantation stage embryonic trophectoderm cell line showed a chemoattractant effect in pbMSCs. Our results suggest that circulating MSCs are present in the peripheral blood under healthy conditions. The fact that both the inflammation and implantation signals induced pbMSCs chemotaxis highlights MSC heterogeneity and suggests that their migratory capacity may differ according to their tissue of origin and would suggest the possible active recruitment of MSCs from bone marrow during pregnancy to repress the immune response to prevent the embryo rejection by the maternal organism.


Assuntos
Quimiotaxia/genética , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Medicina Regenerativa , Adipogenia/genética , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Condrogênese/genética , Implantação do Embrião/genética , Feminino , Humanos , Inflamação/patologia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Relações Materno-Fetais/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteogênese/genética
16.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34490778

RESUMO

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Assuntos
Vacinas contra COVID-19/metabolismo , COVID-19/epidemiologia , COVID-19/prevenção & controle , Preparações de Ação Retardada/química , SARS-CoV-2/metabolismo , Vacinas de Subunidades Antigênicas/metabolismo , Animais , Comovirus , Simulação por Computador , Composição de Medicamentos , Epitopos/química , Temperatura Alta , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Peptídeos/química , Vacinação , Vacinas de Partículas Semelhantes a Vírus/química
17.
Blood ; 133(3): 193-204, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30442679

RESUMO

Cerebral cavernous malformations (CCMs) are common brain vascular dysplasias that are prone to acute and chronic hemorrhage with significant clinical sequelae. The pathogenesis of recurrent bleeding in CCM is incompletely understood. Here, we show that central nervous system hemorrhage in CCMs is associated with locally elevated expression of the anticoagulant endothelial receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR). TM levels are increased in human CCM lesions, as well as in the plasma of patients with CCMs. In mice, endothelial-specific genetic inactivation of Krit1 (Krit1 ECKO ) or Pdcd10 (Pdcd10 ECKO ), which cause CCM formation, results in increased levels of vascular TM and EPCR, as well as in enhanced generation of activated protein C (APC) on endothelial cells. Increased TM expression is due to upregulation of transcription factors KLF2 and KLF4 consequent to the loss of KRIT1 or PDCD10. Increased TM expression contributes to CCM hemorrhage, because genetic inactivation of 1 or 2 copies of the Thbd gene decreases brain hemorrhage in Pdcd10 ECKO mice. Moreover, administration of blocking antibodies against TM and EPCR significantly reduced CCM hemorrhage in Pdcd10 ECKO mice. Thus, a local increase in the endothelial cofactors that generate anticoagulant APC can contribute to bleeding in CCMs, and plasma soluble TM may represent a biomarker for hemorrhagic risk in CCMs.


Assuntos
Anticoagulantes/metabolismo , Proteínas Reguladoras de Apoptose/fisiologia , Hemorragia Cerebral/diagnóstico , Endotélio Vascular/patologia , Hemangioma Cavernoso do Sistema Nervoso Central/complicações , Proteína KRIT1/fisiologia , Proteínas de Membrana/fisiologia , Proteína C/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Trombomodulina/sangue , Adulto , Animais , Coagulação Sanguínea , Estudos de Casos e Controles , Hemorragia Cerebral/sangue , Hemorragia Cerebral/etiologia , Receptor de Proteína C Endotelial/metabolismo , Endotélio Vascular/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/fisiopatologia , Humanos , Fator 4 Semelhante a Kruppel , Camundongos , Camundongos Knockout , Transdução de Sinais , Adulto Jovem
18.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800230

RESUMO

A quality monitoring system for telecommunication services is relevant for network operators because it can help to improve users' quality-of-experience (QoE). In this context, this article proposes a quality monitoring system, named Q-Meter, whose main objective is to improve subscriber complaint detection about telecommunication services using online-social-networks (OSNs). The complaint is detected by sentiment analysis performed by a deep learning algorithm, and the subscriber's geographical location is extracted to evaluate the signal strength. The regions in which users posted a complaint in OSN are analyzed using a freeware application, which uses the radio base station (RBS) information provided by an open database. Experimental results demonstrated that sentiment analysis based on a convolutional neural network (CNN) and a bidirectional long short-term memory (BLSTM)-recurrent neural network (RNN) with the soft-root-sign (SRS) activation function presented a precision of 97% for weak signal topic classification. Additionally, the results showed that 78.3% of the total number of complaints are related to weak coverage, and 92% of these regions were proved that have coverage problems considering a specific cellular operator. Moreover, a Q-Meter is low cost and easy to integrate into current and next-generation cellular networks, and it will be useful in sensing and monitoring tasks.

19.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445691

RESUMO

The routing algorithm is one of the main factors that directly impact on network performance. However, conventional routing algorithms do not consider the network data history, for instances, overloaded paths or equipment faults. It is expected that routing algorithms based on machine learning present advantages using that network data. Nevertheless, in a routing algorithm based on reinforcement learning (RL) technique, additional control message headers could be required. In this context, this research presents an enhanced routing protocol based on RL, named e-RLRP, in which the overhead is reduced. Specifically, a dynamic adjustment in the Hello message interval is implemented to compensate the overhead generated by the use of RL. Different network scenarios with variable number of nodes, routes, traffic flows and degree of mobility are implemented, in which network parameters, such as packet loss, delay, throughput and overhead are obtained. Additionally, a Voice-over-IP (VoIP) communication scenario is implemented, in which the E-model algorithm is used to predict the communication quality. For performance comparison, the OLSR, BATMAN and RLRP protocols are used. Experimental results show that the e-RLRP reduces network overhead compared to RLRP, and overcomes in most cases all of these protocols, considering both network parameters and VoIP quality.

20.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073234

RESUMO

Embryonic implantation is a key step in the establishment of pregnancy. In the present work, we have carried out an in-depth proteomic analysis of the secretome (extracellular vesicles and soluble proteins) of two bovine blastocysts embryonic trophectoderm primary cultures (BBT), confirming different epithelial-mesenchymal transition stages in these cells. BBT-secretomes contain early pregnancy-related proteins and angiogenic proteins both as cargo in EVs and the soluble fraction. We have demonstrated the functional transfer of protein-containing secretome between embryonic trophectoderm and maternal MSC in vitro using two BBT primary cultures eight endometrial MSC (eMSC) and five peripheral blood MSC (pbMSC) lines. We observed that eMSC and pbMSC chemotax to both the soluble fraction and EVs of the BBT secretome. In addition, in a complementary direction, we found that the pattern of expression of implantation proteins in BBT-EVs changes depending on: (i) their epithelial-mesenchymal phenotype; (ii) as a result of the uptake of eMSC- or pbMSC-EV previously stimulated or not with embryonic signals (IFN-); (iii) because of the stimulation with the endometrial cytokines present in the uterine fluid in the peri-implantation period.


Assuntos
Quimiotaxia , Ectoderma/metabolismo , Implantação do Embrião , Embrião de Mamíferos/metabolismo , Endométrio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Bovinos , Linhagem Celular , Feminino , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa