Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(12): e0062923, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971255

RESUMO

IMPORTANCE: The hyperarid Namib Desert is one of the oldest deserts on Earth. It contains multiple clusters of playas which are saline-rich springs surrounded by halite evaporites. Playas are of great ecological importance, and their indigenous (poly)extremophilic microorganisms are potentially involved in the precipitation of minerals such as carbonates and sulfates and have been of great biotechnological importance. While there has been a considerable amount of microbial ecology research performed on various Namib Desert edaphic microbiomes, little is known about the microbial communities inhabiting its multiple playas. In this work, we provide a comprehensive taxonomic and functional potential characterization of the microbial, including viral, communities of sediment mats and halites from two distant salt pans of the Namib Desert, contributing toward a better understanding of the ecology of this biome.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Clima Desértico , Microbiologia do Solo , Cloreto de Sódio
2.
Microb Ecol ; 75(1): 193-203, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28647755

RESUMO

The hyperarid Namib desert is a coastal desert in southwestern Africa and one of the oldest and driest deserts on the planet. It is characterized by a west/east increasing precipitation gradient and by regular coastal fog events (extending up to 75 km inland) that can also provide soil moisture. In this study, we evaluated the role of this natural aridity and xeric gradient on edaphic microbial community structure and function in the Namib desert. A total of 80 individual soil samples were collected at 10-km intervals along a 190-km transect from the fog-dominated western coastal region to the eastern desert boundary. Seventeen physicochemical parameters were measured for each soil sample. Soil parameters reflected the three a priori defined climatic/xeric zones along the transect ("fog," "low rain," and "high rain"). Microbial community structures were characterized by terminal restriction fragment length polymorphism fingerprinting and shotgun metaviromics, and their functional capacities were determined by extracellular enzyme activity assays. Both microbial community structures and activities differed significantly between the three xeric zones. The deep sequencing of surface soil metavirome libraries also showed shifts in viral composition along the xeric transect. While bacterial community assembly was influenced by soil chemistry and stochasticity along the transect, variations in community "function" were apparently tuned by xeric stress.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Microbiologia do Solo , Bactérias/genética , Biodiversidade , Clima Desértico , Namíbia , Filogenia , Polimorfismo de Fragmento de Restrição , Solo/química
3.
J Environ Manage ; 207: 192-202, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29179109

RESUMO

Heterotrophic bacteria proliferate in organic-rich environments and systems containing sufficient essential nutrients. Nitrogen, phosphorus and potassium are the nutrients required in the highest concentrations. The ratio of carbon to nitrogen is an important consideration for wastewater bioremediation because insufficient nitrogen may result in decreased treatment efficiency. It has been shown that during the treatment of effluent from the pulp and paper industry, bacterial nitrogen fixation can supplement the nitrogen requirements of suspended growth systems. This study was conducted using physicochemical analyses and culture-dependent and -independent techniques to ascertain whether nitrogen-fixing bacteria were selected in biological sand filters used to treat synthetic winery wastewater with a high carbon to nitrogen ratio (193:1). The systems performed well, with the influent COD of 1351 mg/L being reduced by 84-89%. It was shown that the nitrogen fixing bacterial population was influenced by the presence of synthetic winery effluent in the surface layers of the biological sand filters, but not in the deeper layers. It was hypothesised that this was due to the greater availability of atmospheric nitrogen at the surface. The numbers of culture-able nitrogen-fixing bacteria, including presumptive Azotobacter spp. exhibited 1-2 log increases at the surface. The results of this study confirm that nitrogen fixation is an important mechanism to be considered during treatment of high carbon to nitrogen wastewater. If biological treatment systems can be operated to stimulate this phenomenon, it may obviate the need for nitrogen addition.


Assuntos
Reatores Biológicos , Fixação de Nitrogênio , Águas Residuárias , Carbono , Nitrogênio , Eliminação de Resíduos Líquidos
4.
BMC Genomics ; 18(1): 521, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28693474

RESUMO

BACKGROUND: Metagenomics allows unprecedented access to uncultured environmental microorganisms. The analysis of metagenomic sequences facilitates gene prediction and annotation, and enables the assembly of draft genomes, including uncultured members of a community. However, while several platforms have been developed for this critical step, there is currently no clear framework for the assembly of metagenomic sequence data. RESULTS: To assist with selection of an appropriate metagenome assembler we evaluated the capabilities of nine prominent assembly tools on nine publicly-available environmental metagenomes, as well as three simulated datasets. Overall, we found that SPAdes provided the largest contigs and highest N50 values across 6 of the 9 environmental datasets, followed by MEGAHIT and metaSPAdes. MEGAHIT emerged as a computationally inexpensive alternative to SPAdes, assembling the most complex dataset using less than 500 GB of RAM and within 10 hours. CONCLUSIONS: We found that assembler choice ultimately depends on the scientific question, the available resources and the bioinformatic competence of the researcher. We provide a concise workflow for the selection of the best assembly tool.


Assuntos
Metagenômica/métodos , Benchmarking , Bases de Dados Genéticas , Meio Ambiente
5.
Extremophiles ; 21(2): 381-392, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28058513

RESUMO

The central Namib Desert is hyperarid, where limited plant growth ensures that biogeochemical processes are largely driven by microbial populations. Recent research has shown that niche partitioning is critically involved in the assembly of Namib Desert edaphic communities. However, these studies have mainly focussed on the Domain Bacteria. Using microbial community fingerprinting, we compared the assembly of the bacterial, fungal and archaeal populations of microbial communities across nine soil niches from four Namib Desert soil habitats (riverbed, dune, gravel plain and salt pan). Permutational multivariate analysis of variance indicated that the nine soil niches presented significantly different physicochemistries (R 2 = 0.8306, P ≤ 0.0001) and that bacterial, fungal and archaeal populations were soil niche specific (R 2 ≥ 0.64, P ≤ 0.001). However, the abiotic drivers of community structure were Domain-specific (P < 0.05), with P, clay and sand fraction, and NH4 influencing bacterial, fungal and archaeal communities, respectively. Soil physicochemistry and soil niche explained over 50% of the variation in community structure, and communities displayed strong non-random patterns of co-occurrence. Taken together, these results demonstrate that in central Namib Desert soil microbial communities, assembly is principally driven by deterministic processes.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Clima Desértico , Fungos/crescimento & desenvolvimento , Consórcios Microbianos/fisiologia , Microbiologia do Solo , Namíbia
6.
Ann Hum Biol ; 44(5): 397-407, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511559

RESUMO

BACKGROUND: The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. METHODS: This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. RESULTS: Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. CONCLUSIONS: Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.


Assuntos
Arqueologia , Evolução Biológica , Migração Humana , África Subsaariana , Distribuição Animal , Animais , Doenças Transmissíveis/epidemiologia , Humanos
7.
Appl Environ Microbiol ; 82(15): 4592-4601, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27208111

RESUMO

UNLABELLED: Fairy circles (FCs) are barren circular patches of soil surrounded by grass species. Their origin is poorly understood. FCs feature in both the gravel plains and the dune fields of the Namib Desert. While a substantial number of hypotheses to explain the origin and/or maintenance of fairy circles have been presented, none are completely consistent with either their properties or their distribution. In this study, we investigated the hypothesis that FC formation in dunes and gravel plains is due to microbial phytopathogenesis. Surface soils from five gravel plain and five dune FCs, together with control soil samples, were analyzed using high-throughput sequencing of bacterial/archaeal (16S rRNA gene) and fungal (internal transcribed spacer [ITS] region) phylogenetic markers. Our analyses showed that gravel plain and dune FC microbial communities are phylogenetically distinct and that FC communities differ from those of adjacent vegetated soils. Furthermore, various soil physicochemical properties, particularly the pH, the Ca, P, Na, and SO4 contents, the soil particle size, and the percentage of carbon, significantly influenced the compositions of dune and gravel plain FC microbial communities, but none were found to segregate FC and vegetated soil communities. Nevertheless, 9 bacterial, 1 archaeal, and 57 fungal phylotypes were identified as FC specific, since they were present within the gravel plain and dune FC soils only, not in the vegetated soils. Some of these FC-specific phylotypes were assigned to taxa known to harbor phytopathogenic microorganisms. This suggests that these FC-specific microbial taxa may be involved in the formation and/or maintenance of Namib Desert FCs. IMPORTANCE: Fairy circles (FCs) are mysterious barren circular patches of soil found within a grass matrix in the dune fields and gravel plains of the Namib Desert. Various hypotheses attempting to explain this phenomenon have been proposed. To date, however, none have been successful in fully explaining the etiology of FCs, particularly since gravel plain FCs have been largely ignored. In this study, we investigated the hypothesis that microorganisms could be involved in the FC phenomenon through phytopathogenesis. We show that the microbial communities in FC and control vegetated soil samples were significantly different. Furthermore, we detected 67 FC-specific microbial phylotypes, i.e., phylotypes present solely in both gravel plain and dune FC soils, some of which were closely related to known phytopathogens. Our results, therefore, demonstrate that microorganisms may play a role in the formation and/or maintenance of Namib Desert FCs, possibly via phytopathogenic activities.


Assuntos
Archaea/isolamento & purificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiologia do Solo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clima Desértico , Ecossistema , Fungos/classificação , Fungos/genética , Sedimentos Geológicos/química , Filogenia , Solo/química
8.
J Basic Microbiol ; 55(8): 1040-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25721729

RESUMO

Ammonia-oxidizing bacteria (AOB) are essential in the biogeochemical cycling of nitrogen as they catalyze the rate-limiting oxidation of ammonia into nitrite. Since their first isolation in the late 19th century, chemolithoautotrophic AOBs have been identified in a wide range of natural (e.g., soils, sediments, estuarine, and freshwaters) and man created or impacted habitats (e.g., wastewater treatment plants and agricultural soils). However, little is known on the plant-species association of AOBs, particularly in the nutrient-starved fynbos terrestrial biome. In this study, we evaluated the diversity of AOBs in the plant canopy of three South African fynbos-specific plant species, namely Leucadendron xanthoconus, Leucospermum truncatulum and Leucadendron microcephalum, through the construction of amoA-gene clone libraries. Our results clearly demonstrate that plant-species specific and monophyletic AOB clades are present in fynbos canopy soils.


Assuntos
Amônia/metabolismo , Betaproteobacteria/classificação , Betaproteobacteria/isolamento & purificação , Oxirredutases/genética , Proteaceae/microbiologia , Rizosfera , Microbiologia do Solo , Betaproteobacteria/genética , Biodiversidade , Biblioteca Gênica , Nitrificação , Nitrogênio/metabolismo , Oxirredução , Oxirredutases/metabolismo , Filogenia , Solo/química , África do Sul
9.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299778

RESUMO

Rainfall is rare in hyperarid deserts but, when it occurs, it triggers large biological responses essential for the long-term maintenance of the ecosystem. In drylands, microbes play major roles in nutrient cycling, but their responses to short-lived opportunity windows are poorly understood. Due to its ephemeral nature, mRNA is ideally suited to study microbiome dynamics upon abrupt changes in the environment. We analyzed microbial community transcriptomes after simulated rainfall in a Namib Desert soil over 7 days. Using total mRNA from dry and watered plots we infer short-term functional responses in the microbiome. A rapid two-phase cycle of activation and return to basal state was completed in a short period. Motility systems activated immediately, whereas competition-toxicity increased in parallel to predator taxa and the drying of soils. Carbon fixation systems were downregulated, and reactivated upon return to a near-dry state. The chaperone HSP20 was markedly regulated by watering across all major bacteria, suggesting a particularly important role in adaptation to desiccated ecosystems. We show that transcriptomes provide consistent and high resolution information on microbiome processes in a low-biomass environment, revealing shared patterns across taxa. We propose a structured dispersal-predation dynamic as a central driver of desert microbial responses to rainfall.


Assuntos
Ecossistema , Microbiota , Solo , Clima Desértico , Microbiologia do Solo , Microbiota/genética , Água , RNA Mensageiro
10.
Cell Rep ; 43(2): 113690, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38244196

RESUMO

We investigate the bacterial and fungal composition and functionality of the Ju|'hoansi intestinal microbiome (IM). The Juǀ'hoansi are a hunter-gatherer community residing in northeastern Namibia. They formerly subsisted by hunting and gathering but have been increasingly exposed to industrial dietary sources, medicines, and lifestyle features. They present an opportunity to study the evolution of the human IM in situ, from a predominantly hunter-gatherer to an increasingly Western urban-forager-farmer lifestyle. Their bacterial IM resembles that of typical hunter-gatherers, being enriched for genera such as Prevotella, Blautia, Faecalibacterium, Succinivibrio, and Treponema. Fungal IM inhabitants include animal pathogens and plant saprotrophs such as Fusarium, Issatchenkia, and Panellus. Our results suggest that diet and culture exert a greater influence on Ju|'hoansi IM composition than age, self-identified biological sex, and medical history. The Ju|'hoansi exhibit a unique core IM composition that diverges from the core IMs of other populations.


Assuntos
Microbioma Gastrointestinal , Saccharomycetales , Animais , Humanos , Prevotella
11.
Microb Ecol ; 66(3): 563-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23828521

RESUMO

Agri effluents such as winery or olive mill wastewaters are characterized by high phenolic concentrations. These compounds are highly toxic and generally refractory to biodegradation. Biological sand filters (BSFs) represent inexpensive, environmentally friendly, and sustainable wastewater treatment systems which rely vastly on microbial catabolic processes. Using denaturing gradient gel electrophoresis and terminal-restriction fragment length polymorphism, this study aimed to assess the impact of increasing concentrations of synthetic phenolic-rich wastewater, ranging from 96 mg L(-1) gallic acid and 138 mg L(-1) vanillin (i.e., a total chemical oxygen demand (COD) of 234 mg L(-1)) to 2,400 mg L(-1) gallic acid and 3,442 mg L(-1) vanillin (5,842 mg COD L(-1)), on bacterial communities and the specific functional diazotrophic community from BSF mesocosms. This amendment procedure instigated efficient BSF phenolic removal, significant modifications of the bacterial communities, and notably led to the selection of a phenolic-resistant and less diverse diazotrophic community. This suggests that bioavailable N is crucial in the functioning of biological treatment processes involving microbial communities, and thus that functional alterations in the bacterial communities in BSFs ensure provision of sufficient bioavailable nitrogen for the degradation of wastewater with a high C/N ratio.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Fenóis/metabolismo , Poluentes Químicos da Água/metabolismo , Purificação da Água , Bactérias/classificação , Biodegradação Ambiental , Biodiversidade , Filtração , Nitrogênio/análise , Nitrogênio/metabolismo , Filogenia , Dióxido de Silício/química , Águas Residuárias/análise , Águas Residuárias/microbiologia , Purificação da Água/instrumentação
12.
Microb Biotechnol ; 16(8): 1603-1610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36641786

RESUMO

Our planet teeters on the brink of massive ecosystem collapses, and arid regions experience manifold environmental and climatic challenges that increase the magnitude of selective pressures on already stressed ecosystems. Ultimately, this leads to their aridification and desertification, that is, to simplified and barren ecosystems (with proportionally less microbial load and diversity) with altered functions and food webs and modification of microbial community network. Thus, preserving and restoring soil health in such a fragile biome could help buffer climate change's effects. We argue that microorganisms and the protection of their functional properties and networks are key to fight desertification. Specifically, we claim that it is rational, possible and certainly practical to rely on native dryland edaphic microorganisms and microbial communities as well as dryland plants and their associated microbiota to conserve and restore soil health and mitigate soil depletion in newly aridified lands. Furthermore, this will meet the objective of protecting/stabilizing (and even enhancing) soil biodiversity globally. Without urgent conservation and restoration actions that take into account microbial diversity, we will ultimately, and simply, not have anything to protect anymore.


Assuntos
Ecossistema , Microbiota , Conservação dos Recursos Naturais , Diamante , Solo , Biodiversidade , Microbiologia do Solo
13.
Commun Biol ; 6(1): 240, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869137

RESUMO

The Stone Age record of South Africa provides some of the earliest evidence for the biological and cultural origins of Homo sapiens. While there is extensive genomic evidence for the selection of polymorphisms in response to pathogen-pressure in sub-Saharan Africa, e.g., the sickle cell trait which provides protection against malaria, there is inadequate direct human genomic evidence for ancient human-pathogen infection in the region. Here, we analysed shotgun metagenome libraries derived from the sequencing of a Later Stone Age hunter-gatherer child who lived near Ballito Bay, South Africa, c. 2000 years ago. This resulted in the identification of ancient DNA sequence reads homologous to Rickettsia felis, the causative agent of typhus-like flea-borne rickettsioses, and the reconstruction of an ancient R. felis genome.


Assuntos
Rickettsia felis , Humanos , Criança , África Austral , DNA , África do Sul , DNA Antigo
14.
Microorganisms ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512843

RESUMO

Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.

15.
Sci Total Environ ; 871: 162137, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36775167

RESUMO

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Assuntos
Ecossistema , Microbiota , Solo , Bactérias , Atmosfera , Temperatura , Microbiologia do Solo
16.
Microbiol Mol Biol Rev ; 86(2): e0010921, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35389249

RESUMO

Arid ecosystems cover ∼40% of the Earth's terrestrial surface and store a high proportion of the global nitrogen (N) pool. They are low-productivity, low-biomass, and polyextreme ecosystems, i.e., with (hyper)arid and (hyper)oligotrophic conditions and high surface UV irradiation and evapotranspiration. These polyextreme conditions severely limit the presence of macrofauna and -flora and, particularly, the growth and productivity of plant species. Therefore, it is generally recognized that much of the primary production (including N-input processes) and nutrient biogeochemical cycling (particularly N cycling) in these ecosystems are microbially mediated. Consequently, we present a comprehensive survey of the current state of knowledge of biotic and abiotic N-cycling processes of edaphic (i.e., open soil, biological soil crust, or plant-associated rhizosphere and rhizosheath) and hypo/endolithic refuge niches from drylands in general, including hot, cold, and polar desert ecosystems. We particularly focused on the microbially mediated biological nitrogen fixation, N mineralization, assimilatory and dissimilatory nitrate reduction, and nitrification N-input processes and the denitrification and anaerobic ammonium oxidation (anammox) N-loss processes. We note that the application of modern meta-omics and related methods has generated comprehensive data sets on the abundance, diversity, and ecology of the different N-cycling microbial guilds. However, it is worth mentioning that microbial N-cycling data from important deserts (e.g., Sahara) and quantitative rate data on N transformation processes from various desert niches are lacking or sparse. Filling this knowledge gap is particularly important, as climate change models often lack data on microbial activity and environmental microbial N-cycling communities can be key actors of climate change by producing or consuming nitrous oxide (N2O), a potent greenhouse gas.


Assuntos
Ecossistema , Microbiota , Nitrificação , Nitrogênio , Ciclo do Nitrogênio , Plantas , Solo , Microbiologia do Solo
17.
ISME Commun ; 2(1): 47, 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37938683

RESUMO

Plants have evolved unique morphological and developmental adaptations to cope with the abiotic stresses imposed by (hyper)arid environments. Such adaptations include the formation of rhizosheath-root system in which mutualistic plant-soil microbiome associations are established: the plant provides a nutrient-rich and shielded environment to microorganisms, which in return improve plant-fitness through plant growth promoting services. We hypothesized that the rhizosheath-root systems represent refuge niches and resource islands for the desert edaphic microbial communities. As a corollary, we posited that microorganisms compete intensively to colonize such "oasis" and only those beneficial microorganisms improving host fitness are preferentially selected by plant. Our results show that the belowground rhizosheath-root micro-environment is largely more hospitable than the surrounding gravel plain soil with higher nutrient and humidity contents, and cooler temperatures. By combining metabarcoding and shotgun metagenomics, we demonstrated that edaphic microbial biomass and community stability increased from the non-vegetated soils to the rhizosheath-root system. Concomitantly, non-vegetated soil communities favored autotrophy lifestyle while those associated with the plant niches were mainly heterotrophs and enriched in microbial plant growth promoting capacities. An intense inter-taxon microbial competition is involved in the colonization and homeostasis of the rhizosheath zone, as documented by significant enrichment of antibiotic resistance genes and CRISPR-Cas motifs. Altogether, our results demonstrate that rhizosheath-root systems are "edaphic mini-oases" and microbial diversity hotspots in hyperarid deserts. However, to colonize such refuge niches, the desert soil microorganisms compete intensively and are therefore prepared to outcompete potential rivals.

18.
Microbiome ; 8(1): 62, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32375874

RESUMO

BACKGROUND: The archaeological incidence of ancient human faecal material provides a rare opportunity to explore the taxonomic composition and metabolic capacity of the ancestral human intestinal microbiome (IM). Here, we report the results of the shotgun metagenomic analyses of an ancient South African palaeo-faecal specimen. METHODS: Following the recovery of a single desiccated palaeo-faecal specimen from Bushman Rock Shelter in Limpopo Province, South Africa, we applied a multi-proxy analytical protocol to the sample. The extraction of ancient DNA from the specimen and its subsequent shotgun metagenomic sequencing facilitated the taxonomic and metabolic characterisation of this ancient human IM. RESULTS: Our results indicate that the distal IM of the Neolithic 'Middle Iron Age' (c. AD 1460) Bantu-speaking individual exhibits features indicative of a largely mixed forager-agro-pastoralist diet. Subsequent comparison with the IMs of the Tyrolean Iceman (Ötzi) and contemporary Hadza hunter-gatherers, Malawian agro-pastoralists and Italians reveals that this IM precedes recent adaptation to 'Western' diets, including the consumption of coffee, tea, chocolate, citrus and soy, and the use of antibiotics, analgesics and also exposure to various toxic environmental pollutants. CONCLUSIONS: Our analyses reveal some of the causes and means by which current human IMs are likely to have responded to recent dietary changes, prescription medications and environmental pollutants, providing rare insight into human IM evolution following the advent of the Neolithic c. 12,000 years ago. Video Abtract.


Assuntos
Arqueologia , Fezes/microbiologia , Microbioma Gastrointestinal , África Subsaariana , História do Século XV , Humanos , Metagenômica
19.
Res Microbiol ; 160(1): 10-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19013517

RESUMO

The macrotidal Seine estuary (France) is one of the most man-altered and mercury-contaminated European estuaries. Molecular quantification by competitive PCR has shown that the highest quantities of Gram-negative merA genes in intertidal freshwater mudflat sediments are located in recent sediment deposits independently of mercury concentrations, suggesting that particle-attached allochtonous mercury-resistant merA bacteria are deposited on mudflat surfaces. To investigate this hypothesis, a microcosm experiment was carried out to evaluate the respective contributions of (i) the input of allochtonous merA bacteria supplied by WWTP-treated effluents and (ii) merA gene abundance corresponding to a response of the sediment's autochthonous bacterial community to mercury contamination. Gram-negative merA gene quantification and T-RFLP analysis of both 16S rDNA and merA genes demonstrated that deposited allochtonous bacteria did not develop in estuarine sediments, whereas mercury contamination (10microg g(-1) wet sediment) selected an autochthonous mercury-resistant merA bacterial community. Thus, in mudflats of highly anthropized macrotidal estuaries, i.e. those subjected to intense hydrosedimentary processes and continuously contaminated by mercury and fecal bacteria, inputs of allochtonous merA bacteria are largely responsible for the high quantities of merA genes on the surface of mudflat sediments.


Assuntos
Bactérias/genética , Genes Bacterianos/efeitos dos fármacos , Mercúrio/farmacologia , Microbiologia da Água , Poluentes Químicos da Água/farmacologia , Bactérias/efeitos dos fármacos , DNA Bacteriano/análise , DNA Ribossômico/análise , Ecossistema , França , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/análise
20.
Front Microbiol ; 10: 1054, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139170

RESUMO

Hot desert surface soils are characterized by extremely low water activities for large parts of any annual cycle. It is widely assumed that microbial processes in such soils are very limited. Here we present the first metatranscriptomic survey of microbial community function in a low water activity hyperarid desert soil. Sequencing of total mRNA revealed a diverse and active community, dominated by Actinobacteria. Metatranscriptomic analysis of samples taken at different times over 3 days indicated that functional diel variations were limited at the whole community level, and mostly affected the eukaryotic subpopulation which was induced during the cooler night hours. High levels of transcription of chemoautotrophic carbon fixation genes contrasted with limited expression of photosynthetic genes, indicating that chemoautotrophy is an important alternative to photosynthesis for carbon cycling in desiccated desert soils. Analysis of the transcriptional levels of key N-cycling genes provided strong evidence that soil nitrate was the dominant nitrogen input source. Transcriptional network analyses and taxon-resolved functional profiling suggested that nutrient acquisition processes, and not diurnal environmental variation, were the main drivers of community activity in hyperarid Namib Desert soil. While we also observed significant levels of expression of common stress response genes, these genes were not dominant hubs in the co-occurrence network.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa