Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Transgenic Res ; 19(6): 1017-39, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20174869

RESUMO

Stanniocalcin-1 (STC1) and -2 (STC2) are highly related, secreted, homodimeric glycoproteins that are significantly upregulated by different forms of stress including high phosphate levels. Transgenic mice that constitutively express either human STC1 or STC2 exhibit intra-uterine growth restriction and permanent post-natal growth retardation. STC1 is expressed in chondrocytic and osteoblastic cells during murine development and can enhance differentiation of calvarial cells in culture. Therefore, there is mounting evidence that stanniocalcins (STCs) modulate bone development in vivo. To further define the effects of stanniocalcins on skeletal development, we performed a series of measurements on components of the axial, appendicular, and cranial skeleton in transgenic and wildtype mice. We show that skeletal growth is retarded and that the intramembranous bones of the cranium exhibit a particularly severe delay in suture closure. The posterior frontal suture remains patent throughout the lifetime of human STC1 and STC2 transgenic mice. We did not observe significant effects on chondrogenesis: however, calvarial cells exhibited reduced viability, proliferation and delayed differentiation, indicating that developing osteoblasts are particularly sensitive to the levels of STCs. Given the evidence linking STC1 to cellular phosphate homeostasis, we assessed the expression of a variety of phosphate regulators in transgenic and wildtype calvarial cells and found significantly lower levels of Mepe, Dmp1, Sfrp4 in transgenic cells without a change in Pit1 or Pit2. Collectively these data support a direct regulatory role for STCs in osteoblasts and suggest that overexposure to these factors inhibits normal skeletal development without significant changes in patterning.


Assuntos
Desenvolvimento Ósseo/genética , Desenvolvimento Ósseo/fisiologia , Glicoproteínas/genética , Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Crânio/crescimento & desenvolvimento , Animais , Sequência de Bases , Suturas Cranianas/embriologia , Suturas Cranianas/crescimento & desenvolvimento , Suturas Cranianas/metabolismo , Primers do DNA/genética , Feminino , Expressão Gênica , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Osteogênese/genética , Osteogênese/fisiologia , Proteínas de Transporte de Fosfato/metabolismo , Gravidez , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Crânio/embriologia , Crânio/metabolismo
2.
Mol Cancer Res ; 18(3): 488-500, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744879

RESUMO

Epithelial ovarian cancer (EOC) spreads by direct dissemination of malignant cells and multicellular clusters, known as spheroids, into the peritoneum followed by implantation and growth on abdominal surfaces. Using a spheroid model system of EOC metastasis, we discovered that Liver kinase B1 (LKB1), encoded by the STK11 gene, and its canonical substrate AMP-activated protein kinase (AMPK) are activated in EOC spheroids, yet only LKB1 is required for cell survival. We have now generated STK11-knockout cell lines using normal human FT190 cells and three EOC cell lines, OVCAR8, HeyA8, and iOvCa147. STK11KO did not affect growth and viability in adherent culture, but it decreased anchorage-independent growth of EOC cells. EOC spheroids lacking LKB1 had markedly impaired growth and viability, whereas there was no difference in normal FT190 spheroids. To test whether LKB1 loss affects EOC metastasis, we performed intraperitoneal injections of OVCAR8-, HeyA8-, and iOvCa147-STK11KO cells, and respective controls. LKB1 loss exhibited a dramatic reduction on tumor burden and metastatic potential; in particular, OVCAR8-STK11KO tumors had evidence of extensive necrosis, apoptosis, and hypoxia. Interestingly, LKB1 loss did not affect AMPKα phosphorylation in EOC spheroids and tumor xenografts, indicating that LKB1 signaling to support EOC cell survival in spheroids and metastatic tumor growth occurs via other downstream mediators. We identified the dual-specificity phosphatase DUSP4 as a commonly upregulated protein due to LKB1 loss; indeed, DUSP4 knockdown in HeyA8-STK11KO cells partially restored spheroid formation and viability. IMPLICATIONS: LKB1 possesses key tumor-promoting activity independent of downstream AMPK signaling during EOC metastasis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Epitelial do Ovário/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Esferoides Celulares
3.
Am J Cancer Res ; 10(5): 1384-1399, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509386

RESUMO

Metastasis in high-grade serous ovarian cancer (HGSOC) occurs through an unconventional route that involves exfoliation of cancer cells from primary tumors and peritoneal dissemination via multicellular clusters or spheroids. Previously, we demonstrated autophagy induction in HGSOC spheroids grown in vitro and in spheroids collected from ovarian cancer patient ascites; thus, we speculate that autophagy may contribute to spheroid cell survival and overall disease progression. Hence, in this study we sought to evaluate whether ULK1 (unc-51-like kinase-1), a serine-threonine kinase critical for stress-induced autophagy, is important for autophagy regulation in HGSOC spheroids. We demonstrate that HGSOC spheroids have increased ULK1 protein expression that parallels autophagy activation. ULK1 knockdown increased p62 accumulation and decreased LC3-II/I ratio in HGSOC spheroids. In addition, knocking down ATG13, a protein that regulates ULK1 activity via complex formation, phenocopied our ULK1 knockdown results. HGSOC spheroids were blocked in autophagic flux due to ULK1 and ATG13 knockdown as determined by an mCherry-eGFP-LC3B fluorescence reporter. These observations were recapitulated when HGSOC spheroids were treated with an ULK1 kinase inhibitor, MRT68921. Autophagy regulation in normal human fallopian tube epithelial FT190 cells, however, may bypass ULK1, since MRT68921 reduced viability in HGSOC spheroids but not in FT190 cells. Interestingly, ULK1 mRNA expression is negatively correlated with patient survival among stage III and stage IV serous ovarian cancer patients. As we observed using established HGSOC cell lines, cultured spheroids using our new, patient-derived HGSOC cells were also sensitive to ULK1 inhibition and demonstrated reduced cell viability to MRT68921 treatment. These results demonstrate the importance of ULK1 for autophagy induction in HGSOC spheroids and therefore justifies further evaluation of MRT68921, and other novel ULK1 inhibitors, as potential therapeutics against metastatic HGSOC.

4.
Cancers (Basel) ; 12(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429240

RESUMO

Epithelial ovarian cancer (EOC) has a unique mode of metastasis, where cells shed from the primary tumour, form aggregates called spheroids to evade anoikis, spread through the peritoneal cavity, and adhere to secondary sites. We previously showed that the master kinase Liver kinase B1 (LKB1) is required for EOC spheroid viability and metastasis. We have identified novel (nua) kinase 1 (NUAK1) as a top candidate LKB1 substrate in EOC cells and spheroids using a multiplex inhibitor beads-mass spectrometry approach. We confirmed that LKB1 maintains NUAK1 phosphorylation and promotes its stabilization. We next investigated NUAK1 function in EOC cells. Ectopic NUAK1-overexpressing EOC cell lines had increased adhesion, whereas the reverse was seen in OVCAR8-NUAK1KO cells. In fact, cells with NUAK1 loss generate spheroids with reduced integrity, leading to increased cell death after long-term culture. Following transcriptome analysis, we identified reduced enrichment for cell interaction gene expression pathways in OVCAR8-NUAK1KO spheroids. In fact, the FN1 gene, encoding fibronectin, exhibited a 745-fold decreased expression in NUAK1KO spheroids. Fibronectin expression was induced during native spheroid formation, yet this was completely lost in NUAK1KO spheroids. Co-incubation with soluble fibronectin restored the compact spheroid phenotype to OVCAR8-NUAK1KO cells. In a xenograft model of intraperitoneal metastasis, NUAK1 loss extended survival and reduced fibronectin expression in tumours. Thus, we have identified a new mechanism controlling EOC metastasis, through which LKB1-NUAK1 activity promotes spheroid formation and secondary tumours via fibronectin production.

5.
Mol Cancer Res ; 15(4): 371-381, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28031411

RESUMO

Epithelial ovarian cancer (EOC) generates multicellular aggregates called spheroids that detach from the primary tumor and disseminate through ascites. Spheroids possess a number of characteristics of tumor dormancy including withdrawal from the cell cycle and resistance to chemotherapeutics. This report systematically analyzes the effects of RNAi depletion of 21 genes that are known to contribute to negative regulation of the cell cycle in 10 ovarian cancer cell lines. Interestingly, spheroid cell viability was compromised by loss of some cyclin-dependent kinase inhibitors such as p57Kip2, as well as Dyrk1A, Lin52, and E2F5 in most cell lines tested. Many genes essential for EOC spheroid viability are pertinent to the mammalian DREAM repressor complex. Mechanistically, the data demonstrate that DREAM is assembled upon the induction of spheroid formation, which is dependent upon Dyrk1A. Loss of Dyrk1A results in retention of the b-Myb-MuvB complex, elevated expression of DREAM target genes, and increased DNA synthesis that is coincident with cell death. Inhibition of Dyrk1A activity using pharmacologic agents Harmine and INDY compromises viability of spheroids and blocks DREAM assembly. In addition, INDY treatment improves the response to carboplatin, suggesting this is a therapeutic target for EOC treatment.Implications: Loss of negative growth control mechanisms in cancer dormancy lead to cell death and not proliferation, suggesting they are an attractive therapeutic approach. Mol Cancer Res; 15(4); 371-81. ©2016 AACR.


Assuntos
Proteínas Interatuantes com Canais de Kv/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Repressoras/genética , Esferoides Celulares/citologia , Carboplatina/farmacologia , Carcinoma Epitelial do Ovário , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Harmina/farmacologia , Humanos , Proteínas Interatuantes com Canais de Kv/metabolismo , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Transativadores/metabolismo , Células Tumorais Cultivadas , Quinases Dyrk
6.
Endocr Relat Cancer ; 23(3): 147-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26647384

RESUMO

Epithelial-mesenchymal transition (EMT) serves as a key mechanism driving tumor cell migration, invasion, and metastasis in many carcinomas. Transforming growth factor-beta (TGFß) signaling is implicated in several steps during cancer pathogenesis and acts as a classical inducer of EMT. Since epithelial ovarian cancer (EOC) cells have the potential to switch between epithelial and mesenchymal states during metastasis, we predicted that modulation of TGFß signaling would significantly impact EMT and the malignant potential of EOC spheroid cells. Ovarian cancer patient ascites-derived cells naturally underwent an EMT response when aggregating into spheroids, and this was reversed upon spheroid re-attachment to a substratum. CDH1/E-cadherin expression was markedly reduced in spheroids compared with adherent cells, in concert with an up-regulation of several transcriptional repressors, i.e., SNAI1/Snail, TWIST1/2, and ZEB2. Treatment of EOC spheroids with the TGFß type I receptor inhibitor, SB-431542, potently blocked the endogenous activation of EMT in spheroids. Furthermore, treatment of spheroids with SB-431542 upon re-attachment enhanced the epithelial phenotype of dispersing cells and significantly decreased cell motility and Transwell migration. Spheroid formation was significantly compromised by exposure to SB-431542 that correlated with a reduction in cell viability particularly in combination with carboplatin treatment. Thus, our findings are the first to demonstrate that intact TGFß signaling is required to control EMT in EOC ascites-derived cell spheroids, and it promotes the malignant characteristics of these structures. As such, we show the therapeutic potential for targeted inhibition of this pathway in ovarian cancer patients with late-stage disease.


Assuntos
Ascite , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Esferoides Celulares/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Antígenos CD , Benzamidas/farmacologia , Caderinas/genética , Carcinoma Epitelial do Ovário , Adesão Celular , Movimento Celular , Células Cultivadas , Dioxóis/farmacologia , Feminino , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Epiteliais e Glandulares/genética , Proteínas Nucleares/genética , Neoplasias Ovarianas/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição da Família Snail , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/fisiologia , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Proteína 1 Relacionada a Twist/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco
7.
Oncotarget ; 6(26): 22424-38, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26068970

RESUMO

Metastatic epithelial ovarian cancer (EOC) cells can form multicellular spheroids while in suspension and disperse directly throughout the peritoneum to seed secondary lesions. There is growing evidence that EOC spheroids are key mediators of metastasis, and they use specific intracellular signalling pathways to control cancer cell growth and metabolism for increased survival. Our laboratory discovered that AKT signalling is reduced during spheroid formation leading to cellular quiescence and autophagy, and these may be defining features of tumour cell dormancy. To further define the phenotype of EOC spheroids, we have initiated studies of the Liver kinase B1 (LKB1)-5'-AMP-activated protein kinase (AMPK) pathway as a master controller of the metabolic stress response. We demonstrate that activity of AMPK and its upstream kinase LKB1 are increased in quiescent EOC spheroids as compared with proliferating adherent EOC cells. We also show elevated AMPK activity in spheroids isolated directly from patient ascites. Functional studies reveal that treatment with the AMP mimetic AICAR or allosteric AMPK activator A-769662 led to a cytostatic response in proliferative adherent ovarian cancer cells, but they fail to elicit an effect in spheroids. Targeted knockdown of STK11 by RNAi to reduce LKB1 expression led to reduced viability and increased sensitivity to carboplatin treatment in spheroids only, a phenomenon which was AMPK-independent. Thus, our results demonstrate a direct impact of altered LKB1-AMPK signalling function in EOC. In addition, this is the first evidence in cancer cells demonstrating a pro-survival function for LKB1, a kinase traditionally thought to act as a tumour suppressor.


Assuntos
Neoplasias Epiteliais e Glandulares/enzimologia , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Humanos , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Esferoides Celulares , Transfecção
8.
J Endocrinol ; 197(3): 517-29, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18492817

RESUMO

Stanniocalcin 1 (STC1) and STC2 are secreted, homodimeric glycoproteins that share 30% amino acid sequence identity. Breast tumour gene profiling studies have demonstrated significantly upregulated STC2 expression in hormone-responsive positive breast tumours; therefore, the purpose of this study was to investigate STC2 hormonal regulation and function in breast cancer cells. Here we report that STC2 is expressed in a number of human breast cancer cell lines, regardless of their oestrogen (E(2)) and progesterone (P4) receptor status, and its expression is readily detectable in human and mouse mammary gland tumours. Besides E(2), retinoic acid (RA) and P4 play an important role in the regulation of STC2 expression, not only in MCF-7 but also in other breast cancer and non-breast cell lines. The expression of the related hormone, STC1, is not affected by the above hormones in breast and endometrial cancer cell lines implying a fundamental difference in regulation in cancer cell lines. The induction of STC2 expression by E(2) and RA occurs at the transcriptional level but through intermediary transcription factors. The STC2 proximal promoter region is not responsible for hormonal induction, but exhibits a high basal transcriptional activity. Constitutive STC2 expression in human breast cancer cell lines resulted in significant impairment of cell growth, migration and cell viability after serum withdrawal. In conclusion, STC2 is a downstream target of E(2), P4 and RA signalling pathways. In hormone receptor negative cell lines it can function in a paracrine/autocrine fashion to reduce cell proliferation.


Assuntos
Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Glicoproteínas/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Transdução de Sinais/fisiologia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Tretinoína/farmacologia
9.
Rev. cuba. med. trop ; 52(1)ene.-abr. 2000. ilus, tab
Artigo em Espanhol | CUMED | ID: cum-34340

RESUMO

Se desarrolló un método directo y económico de reacción en cadena de la polimerasa para la detección de Enterovirus, que no requiere pasos previos de extracción de ácido ribonucleico (ARN), a partir de sobrenadantes de cultivos celulares infectados. El sistema se desarrolló mediante cebadores universales del género Enterovirus y cebadores específicos de la cepa vacunal Sabin 1. Los resultados obtenidos demuestran que la ausencia de métodos de extracción y purificación de ARN previos a la reacción no afectan la sensibilidad y especificidad del sistema, lo que posibilita que pueda ser utilizado para la detección rápida de genomas de Enterovirus e identificación de cepas vacunales de poliovirus(AU)


Assuntos
Reação em Cadeia da Polimerase/métodos , Enterovirus/genética , Enterovirus/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa