RESUMO
Control of infections caused by carbapenem-resistant Klebsiella pneumoniae continues to be challenging. The success of this pathogen is favored by its ability to acquire antimicrobial resistance and to spread and persist in both the environment and in humans. The emergence of clinically important clones, such as sequence types 11, 15, 101, and 258, has been reported worldwide. However, the mechanisms promoting the dissemination of such high-risk clones are unknown. Unraveling the factors that play a role in the pathobiology and epidemicity of K. pneumoniae is therefore important for managing infections. To address this issue, we studied a carbapenem-resistant ST-15 K. pneumoniae isolate (Kp3380) that displayed a remarkable adherent phenotype with abundant pilus-like structures. Genome sequencing enabled us to identify a chaperone-usher pili system (Kpi) in Kp3380. Analysis of a large K. pneumoniae population from 32 European countries showed that the Kpi system is associated with the ST-15 clone. Phylogenetic analysis of the operon revealed that Kpi belongs to the little-characterized γ2-fimbrial clade. We demonstrate that Kpi contributes positively to the ability of K. pneumoniae to form biofilms and adhere to different host tissues. Moreover, the in vivo intestinal colonizing capacity of the Kpi-defective mutant was significantly reduced, as was its ability to infect Galleria mellonella The findings provide information about the pathobiology and epidemicity of Kpi+K. pneumoniae and indicate that the presence of Kpi may explain the success of the ST-15 clone. Disrupting bacterial adherence to the intestinal surface could potentially target gastrointestinal colonization.
Assuntos
Fímbrias Bacterianas/genética , Klebsiella pneumoniae/genética , Chaperonas Moleculares/genética , Células A549 , Animais , Antibacterianos , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Carbapenêmicos/farmacologia , Linhagem Celular , Modelos Animais de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Células Epiteliais/microbiologia , Europa (Continente) , Feminino , Deleção de Genes , Genes Bacterianos/genética , Humanos , Infecções por Klebsiella , Klebsiella pneumoniae/citologia , Klebsiella pneumoniae/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Tipagem de Sequências Multilocus , Óperon , FilogeniaRESUMO
Bacillus spp. supplementation as probiotics in cultured fish diets has a long history of safe and effective use. Specifically, B. velezensis show great promise in fine-tuning the European sea bass disease resistance against the pathogenicity caused by several members of the Vibrio family. However, the immunomodulatory mechanisms behind this response remain poorly understood. Here, to examine the inherent immune variations in sea bass, two equal groups were fed for 30 days with a steady diet, with one treatment supplemented with B. velezensis. The serum bactericidal capacity against live cells of Vibrio anguillarum strain 507 and the nitric oxide and lysozyme lytic activities were assayed. At the cellular level, the phagocytic response of peripheral blood leukocytes against inactivated Candida albicans was determined. Moreover, head-kidney (HK) total leukocytes were isolated from previously in vivo treated fish with LPS of V. anguillarum strain 507. Mechanistically, the expression of some essential proinflammatory genes (interleukin-1 (il1b), tumor necrosis factor-alpha (tnfa), and cyclooxygenase 2 (cox2) and the sea bass specific antimicrobial peptide (AMP) dicentracin (dic) expressions were assessed. Surprisingly, the probiotic supplementation significantly increased all humoral lytic and cellular activities assayed in the treated sea bass. In addition, time-dependent differences were observed between the control and probiotic treated groups for all the HK genes markers subjected to the sublethal LPS dose. Although the il1b was the fastest responding gene to a significant level at 48 h post-injection (hpi), all the other genes followed 72 h in the probiotic supplemented group. Finally, an in vivo bacteria challenge against live V. anguillarum was conducted. The probiotic fed fish observed a significantly higher survival. Overall, our results provide clear vertical evidence on the beneficial immune effects of B. velezensis and unveil some fundamental immune mechanisms behind its application as a probiotic agent in intensively cultured European sea bass.
Assuntos
Bacillus , Bass , Doenças dos Peixes , Vibrioses , Animais , Suplementos Nutricionais , Resistência à Doença , Lipopolissacarídeos , Vibrio , Vibrioses/veterináriaRESUMO
Hafnia alvei is receiving increasing attention from both a medical and veterinary point of view, but the diversity of molecules it produces has made the interest in this bacterium extend to the field of probiotics, the microbiota, and above all, to its presence and action on consumer foods. The production of Acyl Homoserine Lactones (AHLs), a type of quorum-sensing (QS) signaling molecule, is the most often-studied chemical signaling molecule in Gram-negative bacteria. H. alvei can use this communication mechanism to promote the expression of certain enzymatic activities in fermented foods, where this bacterium is frequently present. H. alvei also produces a series of molecules involved in the modification of the organoleptic properties of different products, especially cheeses, where it shares space with other microorganisms. Although some strains of this species are implicated in infections in humans, many produce antibacterial compounds, such as bacteriocins, that inhibit the growth of true pathogens, so the characterization of these molecules could be very interesting from the point of view of clinical medicine and the food industry. Lastly, in some cases, H. alvei is responsible for the production of biogenic amines or other compounds of special interest in food health. In this article, we will review the most interesting molecules that produce the H. alvei strains and will discuss some of their properties, both from the point of view of their biological activity on other microorganisms and the properties of different food matrices in which this bacterium usually thrives.
Assuntos
Queijo , Hafnia alvei , Acil-Butirolactonas , Bactérias/metabolismo , Hafnia alvei/metabolismo , Humanos , Percepção de QuorumRESUMO
Yersiniosis, caused by the fish pathogen Yersinia ruckeri, is a serious bacterial septicaemia affecting mainly salmonids worldwide. The acute infection may result in high mortality without apparent external disease signs, while the chronic one causes moderate to considerable mortality. Survivors of yersiniosis outbreaks become carriers. Y. ruckeri is able to adhere to, and to invade, phagocytic and non-phagocytic fish cells by using unknown molecular mechanisms. The aim of this study was to describe the kinetics of cell invasion by Y. ruckeri serotype O1 biotype 1 in a fish cell line (RTG-2) originating from rainbow trout gonads. The efficiency of invasion by Y. ruckeri was found to be temperature dependent, having a maximum at 20 °C. The bacterium was able to survive up to 96 h postinfection. The incubation of the cells at 4 °C and the pre-incubation of the bacteria with sugars or heat-inactivated antiserum significantly decreased the efficiency of invasion or even completely prevented the invasion of RTG-2 cells. These findings indicate that Y. ruckeri is capable of adhering to, entering and surviving within non-phagocytic cells, and that the intracellular environment may constitute a suitable niche for this pathogen that can favour the spread of infection and/or the maintenance of a carrier state of fish.
RESUMO
Corynebacterium striatum is a nosocomial pathogen which is increasingly associated with serious infections in both immunocompetent and immunocompromised patients. However, little is known about virulence factors and mechanisms that may enhance the establishment and long-term survival of Corynebacterium striatum. in the hospital environment. In this study, we investigated the ability of 22 multidrug-resistant C. striatum clinical isolates to adhere to human epithelial cells and to produce biofilm on polystyrene plates, glass and various tracheostomy tubes. We also tested the virulence of these strains on the nematode Caenorhabditis elegans. They showed good adhesion to epithelial human cells after 180 min of infection. The 22 C. striatum were able to produce biofilms on positively and negatively charged abiotic surfaces at 37 °C. They were also able to infect and to kill Caenorhabditis elegans after 5 days of infection. The virulence condition was associated with the presence of SpaDEF operon encoding pili in all strains. This study provides new insights on virulence mechanisms that may contribute to the persistence of C. striatum in the hospital environment, increasing the probability of causing nosocomial infections.
Assuntos
Infecções por Corynebacterium , Biofilmes , Corynebacterium/genética , Células Epiteliais , Humanos , VirulênciaRESUMO
Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance. However, to achieve standardized treatments at the practical level and avoid possible side effects in cultivated fish, several improvements in the understanding of their biology and the associated genomes are required. Interestingly, a particular feature with therapeutic potential among all phages is the production of lytic enzymes. The use of such enzymes against human and livestock pathogens has already provided in vitro and in vivo promissory results. So far, the best-understood phages utilized to fight against either Gram-negative or Gram-positive bacterial species in fish culture are mainly restricted to the Myoviridae and Podoviridae, and the Siphoviridae, respectively. However, the current functional use of phages against bacterial pathogens of cultured fish is still in its infancy. Based on the available data, in this review, we summarize the current knowledge about phage, identify gaps, and provide insights into the possible bacterial control strategies they might represent for managing aquaculture-related bacterial diseases.
Assuntos
Infecções Bacterianas/terapia , Myoviridae , Terapia por Fagos , Podoviridae , Siphoviridae , Animais , Infecções Bacterianas/virologia , HumanosRESUMO
Presently, biopreservation through protective bacterial cultures and their antimicrobial products or using antibacterial compounds derived from plants are proposed as feasible strategies to maintain the long shelf-life of products. Another emerging category of food biopreservatives are bacteriophages or their antibacterial enzymes called "phage lysins" or "enzybiotics", which can be used directly as antibacterial agents due to their ability to act on the membranes of bacteria and destroy them. Bacteriophages are an alternative to antimicrobials in the fight against bacteria, mainly because they have a practically unique host range that gives them great specificity. In addition to their potential ability to specifically control strains of pathogenic bacteria, their use does not generate a negative environmental impact as in the case of antibiotics. Both phages and their enzymes can favor a reduction in antibiotic use, which is desirable given the alarming increase in resistance to antibiotics used not only in human medicine but also in veterinary medicine, agriculture, and in general all processes of manufacturing, preservation, and distribution of food. We present here an overview of the scientific background of phages and enzybiotics in the food industry, as well as food applications of these biopreservatives.
Assuntos
Antibacterianos/farmacologia , Bactérias/virologia , Bacteriófagos/química , Indústria Alimentícia/métodos , Conservação de Alimentos/métodos , Animais , Alimentos , HumanosRESUMO
Serratia spp. are opportunistic human pathogens responsible for an increasing number of nosocomial infections. However, little is known about the virulence factors and regulatory circuits that may enhance the establishment and long-term survival of Serratia liquefaciens in the hospital environment. In this study, two reporter strains, Chromobacterium violaceum CV026 and VIR24, and high-resolution triple-quadrupole liquid chromatography-mass spectrometry (LC-MS) were used to detect and to quantify N-acyl-homoserine lactone (AHL) quorum-sensing signals in 20 S. liquefaciens strains isolated from clinical samples. Only four of the strains produced sufficient amounts of AHLs to activate the sensors. Investigation of two of the positive strains by high-performance liquid chromatography (HPLC)-MS confirmed the presence of significant amounts of short-acyl-chain AHLs (N-butyryl-l-homoserine lactone [C4-HSL] and N-hexanoyl-l-homoserine lactone [C6-HSL]) in both strains, which exhibited a complex and strain-specific signal profile that included minor amounts of other short-acyl-chain AHLs (N-octanoyl-l-homoserine lactone [C8-HSL] and N-3-oxohexanoyl-l-homoserine lactone [OC6-HSL]) and long-acyl-chain (C10, C12, and C14) AHLs. No correlation between biofilm formation and the production of large amounts of AHLs could be established. Fimbria-like structures were observed by transmission electron microscopy, and the presence of the type 1 fimbrial adhesin gene fimH in all strains was confirmed by PCR. The ability of S. liquefaciens to adhere to abiotic surfaces and to form biofilms likely contributes to its persistence in the hospital environment, increasing the probability of causing nosocomial infections. Therefore, a better understanding of the adherence properties of this species will provide greater insights into the diseases it causes.
Assuntos
Biofilmes , Infecção Hospitalar/microbiologia , Percepção de Quorum , Infecções por Serratia/microbiologia , Serratia liquefaciens/fisiologia , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Humanos , Serratia liquefaciens/genética , Serratia liquefaciens/isolamento & purificaçãoRESUMO
Amid growing concerns about antibiotic resistance, innovative strategies are imperative in addressing bacterial infections in aquaculture. Quorum quenching (QQ), the enzymatic inhibition of quorum sensing (QS), has emerged as a promising solution. This study delves into the QQ capabilities of the probiotic strain Bacillus velezensis D-18 and its products, particularly in Vibrio anguillarum 507 communication and biofilm formation. Chromobacterium violaceum MK was used as a biomarker in this study, and the results confirmed that B. velezensis D-18 effectively inhibits QS. Further exploration into the QQ mechanism revealed the presence of lactonase activity by B. velezensis D-18 that degraded both long- and short-chain acyl homoserine lactones (AHLs). PCR analysis demonstrated the presence of a homologous lactonase-producing gene, ytnP, in the genome of B. velezensis D-18. The study evaluated the impact of B. velezensis D-18 on V. anguillarum 507 growth and biofilm formation. The probiotic not only controls the biofilm formation of V. anguillarum but also significantly restrains pathogen growth. Therefore, B. velezensis D-18 demonstrates substantial potential for preventing V. anguillarum diseases in aquaculture through its QQ capacity. The ability to disrupt bacterial communication and control biofilm formation positions B. velezensis D-18 as a promising eco-friendly alternative to conventional antibiotics in managing bacterial diseases in aquaculture.
RESUMO
A wide variety of microorganisms has previously been identified as causes of brain infection. Among them, Listeria monocytogenes has a particular tropism for the central nervous system. To gain knowledge about the immune response elicited by L. monocytogenes in the brain, we used a rat ex vivo organotypic nervous system culture as a model for Listeria infection. Scanning electron microscopy (SEM) revealed that activated microglial cells showing a typical amoeboid morphology are quickly recruited to the surface of the explants after the infection. After bacterial engulfment, these cells appear to act as Trojan horses, releasing the engulfed bacteria inside the brain tissue. We describe cycles of microglial phagocytosis, necrotic cell death and the subsequent removal of cell debris for the first time. Furthermore, we used this ex vivo model to assess the expression profiles of immune relevant genes up to 24 h postinfection by means of q-PCR-arrays, finding that a number of inflammation-promoting genes are upregulated. Shortly after infection by L. monocytogenes, upregulated genes were those that encoded molecules involved in Th1 responses, being the Ccl2 chemokine and members of the interleukin1-ß family the most abundant immunomodulatory signals expressed. After 5 h of infection, L. monocytogenes caused a substantial increase in the expression of TLR1 and TLR2 genes, as well as in several downstream genes of the TLR signaling pathways.
Assuntos
Encefalopatias/microbiologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/imunologia , Listeria monocytogenes/genética , Listeriose/genética , Listeriose/patologia , Microglia/microbiologia , Microglia/patologia , Animais , Animais Recém-Nascidos , Encefalopatias/imunologia , Encefalopatias/patologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/imunologia , Listeriose/imunologia , Microglia/ultraestrutura , Microscopia Eletrônica de Varredura , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-DawleyRESUMO
The genus Aeromonas has received constant attention in different areas, from aquaculture and veterinary medicine to food safety, where more and more frequent isolates are occurring with increased resistance to antibiotics. The present paper studied the interaction of Aeromonas strains isolated from fresh produce and water with different eukaryotic cell types with the aim of better understanding the cytotoxic capacity of these strains. To study host-cell pathogen interactions in Aeromonas, we used HT-29, Vero, J774A.1, and primary mouse embryonic fibroblasts. These interactions were analyzed by confocal microscopy to determine the cytotoxicity of the strains. We also used Galleria mellonella larvae to test their pathogenicity in this experimental model. Our results demonstrated that two strains showed high cytotoxicity in epithelial cells, fibroblasts, and macrophages. Furthermore, these strains showed high virulence using the G. mellonella model. All strains used in this paper generally showed low levels of resistance to the different families of the antibiotics being tested. These results indicated that some strains of Aeromonas present in vegetables and water pose a potential health hazard, displaying very high in vitro and in vivo virulence. This pathogenic potential, and some recent concerning findings on antimicrobial resistance in Aeromonas, encourage further efforts in examining the precise significance of Aeromonas strains isolated from foods for human consumption.
RESUMO
The Achromobacter genus includes opportunistic pathogens that can cause chronic infections in immunocompromised patients, especially in people with cystic fibrosis (CF). Treatment of Achromobacter infections is complicated by antimicrobial resistance. In this study, a collection of Achromobacter clinical isolates, from CF and non-CF sources, was investigated for polymyxin B (PmB) resistance. Additionally, the effect of PmB challenge in a subset of isolates was examined and the presence of PmB-resistant subpopulations within the isolates was described. Further, chemical and mass spectrometry analyses of the lipid A of Achromobacter clinical isolates enabled the determination of the most common structures and showed that PmB challenge was associated with lipid A modifications that included the addition of glucosamine and palmitoylation and the concomitant loss of the free phosphate at the C-1 position. This study demonstrates that lipid A modifications associated with PmB resistance are prevalent in Achromobacter and that subresistant populations displaying the addition of positively charged residues and additional acyl chains to lipid A can be selected for and isolated from PmB-sensitive Achromobacter clinical isolates. IMPORTANCE Achromobacter species can cause chronic and potentially severe infections in immunocompromised patients, especially in those with cystic fibrosis. Bacteria cannot be eradicated due to Achromobacter's intrinsic multidrug resistance. We report that intrinsic resistance to polymyxin B (PmB), a last-resort antimicrobial peptide used to treat infections by multiresistant bacteria, is prevalent in Achromobacter clinical isolates; many isolates also display increased resistance upon PmB challenge. Analysis of the lipopolysaccharide lipid A moiety of several Achromobacter species reveals a penta-acylated lipid A, which in the PmB-resistant isolates was modified by the incorporation of glucosamine residues, an additional acyl chain, loss of phosphates, and hydroxylation of acyl chains, all of which can enhance PmB resistance in other bacteria. We conclude that PmB resistance, particularly in Achromobacter isolates from chronic respiratory infections, is a common phenomenon, and that Achromobacter lipid A displays modifications that may confer increased resistance to polymyxins and potentially other antimicrobial peptides.
Assuntos
Achromobacter , Fibrose Cística , Humanos , Polimixinas/farmacologia , Achromobacter/genética , Polimixina B/farmacologia , Lipídeo A , Lipopolissacarídeos , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Antibacterianos/farmacologia , Testes de Sensibilidade MicrobianaRESUMO
Antimicrobial-resistant pathogenic bacteria are an increasing problem in public health, especially in the healthcare environment, where nosocomial infection microorganisms find their niche. Among these bacteria, the genus Acinetobacter which belongs to the ESKAPE pathogenic group harbors different multi-drug resistant (MDR) species that cause human nosocomial infections. Although A. baumannii has always attracted more interest, the close-related species A. pittii is the object of more study due to the increase in its isolation and MDR strains. In this work, we present the genomic analysis of five clinically isolated A. pittii strains from a Spanish hospital, with special attention to their genetic resistance determinants and plasmid structures. All the strains harbored different genes related to ß-lactam resistance, as well as different MDR efflux pumps. We also found and described, for the first time in this species, point mutations that seem linked with colistin resistance, which highlights the relevance of this comparative analysis among the pathogenic species isolates.
RESUMO
Phages are viruses that infect bacteria, relying on their genetic machinery to replicate. To survive the constant attack of phages, bacteria have developed diverse defense strategies to act against them. Nevertheless, phages rapidly co-evolve to overcome these barriers, resulting in a constant, and often surprising, molecular arms race. Thus, some phages have evolved protein inhibitors known as anti-CRISPRs (â¼50-150 amino acids), which antagonize the bacterial CRISPR-Cas immune response. To date, around 45 anti-CRISPRs proteins with different mechanisms and structures have been discovered against the CRISPR-Cas type I and type II present in important animal and human pathogens such as Escherichia, Morganella, Klebsiella, Enterococcus, Pseudomonas, Staphylococcus, and Salmonella. Considering the alarming growth of antibiotic resistance, phage therapy, either alone or in combination with antibiotics, appears to be a promising alternative for the treatment of many bacterial infections. In this review, we illustrated the biological and clinical aspects of using phage therapy; furthermore, the CRISPR-Cas mechanism, and the interesting activity of anti-CRISPR proteins as a possible weapon to combat bacteria.
Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Sistemas CRISPR-Cas , Bactérias/genética , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Acinetobacter baumannii is a Gram-negative coccoid rod species, clinically relevant as a human pathogen, included in the ESKAPE group. Carbapenem-resistant A. baumannii (CRAB) are considered by the World Health Organization (WHO) as a critical priority pathogen for the research and development of new antibiotics. Some of the most relevant features of this pathogen are its intrinsic multidrug resistance and its ability to acquire rapid and effective new resistant determinants against last-resort clinical antibiotics, mostly from other ESKAPE species. The presence of plasmids and mobile genetic elements in their genomes contributes to the acquisition of new antimicrobial resistance determinants. However, although A. baumannii has arisen as an important human pathogen, information about these elements is still not well understood. Current genomic analysis availability has increased our ability to understand the microevolution of bacterial pathogens, including point mutations, genetic dissemination, genomic stability, and pan- and core-genome compositions. In this work, we deeply studied the genomes of four clinical strains from our hospital, and the reference strain ATCC®19606TM, which have shown a remarkable ability to survive and maintain their effective capacity when subjected to long-term stress conditions. With that, our aim was presenting a detailed analysis of their genomes, including antibiotic resistance determinants and plasmid composition.
RESUMO
Within the food-producing sectors, aquaculture is the one that has developed the greatest growth in recent decades, currently representing almost 50% of the world's edible fish. The diseases can affect the final production in intensive aquaculture; in seabass, aquaculture vibriosis is one of the most important diseases producing huge economical losses in this industry. The usual methodology to solve the problems associated with the bacterial pathology has been the use of antibiotics, with known environmental consequences. This is why probiotic bacteria are proposed as an alternative fight against pathogenic bacteria. The aim of this study was to analyse a strain of Bacillus velezensis D-18 isolated from a wastewater sample collected from a fish farm, for use as probiotics in aquaculture. The strain was evaluated in vitro through various mechanisms of selection, obtaining as results for growth inhibition by co-culture a reduction of 30%; B. velezensis D-18 was able to survive at 1.5-h exposure to 10% seabass bile, and at pH 4, its survival is 5% and reducing by 60% the adhesion capacity of V. anguillarum 507 to the mucus of seabass and in vivo by performing a challenge. Therefore, in conclusion, we consider B. velezensis D-18 isolate from wastewater samples collected from the farms as a good candidate probiotic in the prevention of the infection by Vibrio anguillarum 507 in European seabass after in vitro and biosafety assays.
Assuntos
Aquicultura , Bacillus , Bass , Probióticos , Vibrioses , Animais , Bass/microbiologia , Vibrio/patogenicidade , Vibrioses/prevenção & controle , Vibrioses/veterinária , Águas Residuárias/microbiologiaRESUMO
Salmonella enterica is an intracellular bacterial pathogen that inhabits membrane-bound vacuoles of eukaryotic cells. Coined as the 'Salmonella-containing vacuole' (SCV), this compartment has been studied for two decades as a replicative niche. Recent findings reveal, however, marked differences in the lifestyle of bacteria enclosed in the SCV of varied host cell types. In fibroblasts, the emerging view supports a model of bacteria facing in the SCV a 'to grow' or 'not to grow' dilemma, which is solved by entering in a dormancy-like state. Fine-tuning of host cell defense/survival routes, drastic metabolic shift down, adaptation to hypoxia conditions, and attenuation of own virulence systems emerge as strategies used by Salmonella to intentionally reduce the growth rate inside the SCV.
Assuntos
Adaptação Fisiológica , Salmonella enterica/crescimento & desenvolvimento , Vacúolos/microbiologia , Regulação Bacteriana da Expressão GênicaRESUMO
Hafnia alvei is a Gram-negative facultatively anaerobic bacillus that constitutes part of the human gut flora. Until recently, H. alvei strains could be mistakenly identified by conventional methods, miniaturisation or automatic systems as members of the Serratia, Escherichia, Citrobacter, Yokenella, Obesumbacterium or Salmonella genera. Consequently, molecular techniques were required for their definitive identification in the clinical laboratory. In addition, a new Hafnia species, H. paralvei, has recently appeared, which undoubtedly includes many of the strains reported in the literature as H. alvei. Alrhough H. alvei isolation from human clinical specimens remains uncommon, the development of drug resistance due to this species is emerging and it is likely that this organism will gain increasing importance in the future. Moreover, although H. alvei shares some virulence mechanisms with other Gram-negative enteropathogens, little is known about the factors that contribute to its pathogenesis in humans. The present article reviews the current identification methods, antimicrobial resistance and virulence factors of this bacterium.
Assuntos
Infecções por Enterobacteriaceae , Hafnia alvei , Farmacorresistência Bacteriana , Infecções por Enterobacteriaceae/microbiologia , Hafnia alvei/classificação , Hafnia alvei/efeitos dos fármacos , Hafnia alvei/patogenicidade , Humanos , Fatores de VirulênciaRESUMO
The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.