Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 290(6): 2325-33, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26141567

RESUMO

Ribosomal protein genes occasionally undergo successful migration from the mitochondrion to the nucleus in flowering plants and we previously presented evidence that the S19 ribosomal protein gene (rps19) had been transferred to the nucleus in the common ancestor of Poaceae grasses. In many lineages, the mitochondrial copy was subsequently lost or pseudogenized, although in rice it was retained and the nuclear copy lost. We have now determined that functional rps19 genes are present in both the mitochondrion and nucleus in brome grass (Bromus inermis). The mitochondrion-located rps19 gene, which is immediately downstream of an rpl2 pseudogene, is transcribed and edited. The nuclear-located rps19 gene is also actively expressed and it possesses the same intron-containing hsp70-type presequence as its counterparts in other grasses, as well as shared derived amino acids within the S19 core. We conclude that this brome rps19 gene is derived from the same transfer event that occurred in the common ancestor of grasses at least 60 million years ago. In the oat lineage, a subsequent exon shuffling-type event has resulted in novel amino-terminal sequences replacing part of the hsp70 presequence, and in the barley lineage, there has been an additional DNA-mediated transfer of the mitochondrial rps19 gene and its flanking sequences, followed by relatively recent loss of the mitochondrion-located copy. The prolonged persistence of functional copies in both compartments, as evidenced by present-day brome, raises interesting questions about their respective roles.


Assuntos
Núcleo Celular/genética , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/química , Pseudogenes , Proteínas Ribossômicas/química , Homologia de Sequência de Aminoácidos
2.
Biochem Soc Trans ; 42(2): 250-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24646226

RESUMO

The cyclic nucleotide second messengers cAMP and cGMP each affect virtually all cellular processes. Although these hydrophilic small molecules readily diffuse throughout cells, it is remarkable that their ability to activate their multiple intracellular effectors is spatially and temporally selective. Studies have identified a critical role for compartmentation of the enzymes which hydrolyse and metabolically inactivate these second messengers, the PDEs (cyclic nucleotide phosphodiesterases), in this specificity. In the present article, we describe several examples from our work in which compartmentation of selected cAMP- or cGMP-hydrolysing PDEs co-ordinate selective activation of cyclic nucleotide effectors, and, as a result, selectively affect cellular functions. It is our belief that therapeutic strategies aimed at targeting PDEs within these compartments will allow greater selectivity than those directed at inhibiting these enzymes throughout the cells.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Animais , Humanos , Transdução de Sinais/fisiologia
3.
Am J Pathol ; 179(3): 1549-59, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21718678

RESUMO

Because both endothelin-1 (ET-1) and angiotensin II (AngII) are independent mediators of arterial remodeling, we sought to determine the role of ET receptor inhibition in AngII-accelerated atherosclerosis and aortic aneurysm formation. We administered saline or AngII and/or bosentan, an endothelin receptor antagonist (ERA) for 7, 14, or 28 days to 6-week- and 6-month-old apolipoprotein E-knockout mice. AngII treatment increased aortic atherosclerosis, which was reduced by ERA. ET-1 immunostaining was localized to macrophage-rich regions in aneurysmal vessels. ERA did not prevent AngII-induced aneurysm formation but instead may have increased aneurysm incidence. In AngII-treated animals with aneurysms, ERA had a profound effect on the non-aneurysmal thoracic aorta via increasing wall thickness, collagen/elastin ratio, wall stiffness, and viscous responses. These observations were confirmed in acute in vitro collagen sheet production models in which ERA inhibited AngII's dose-dependent effect on collagen type 1 α 1 (COL1A1) gene transcription. However, chronic treatment reduced matrix metalloproteinase 2 mRNA expression but enhanced COL3A1, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 mRNA expressions. These data confirm a role for the ET system in AngII-accelerated atherosclerosis but suggest that ERA therapy is not protective against the formation of AngII-induced aneurysms and can paradoxically stimulate a chronic arterial matrix remodeling response.


Assuntos
Angiotensina II/efeitos adversos , Aneurisma Aórtico/induzido quimicamente , Apolipoproteínas E , Aterosclerose/induzido quimicamente , Endotelina-1/fisiologia , Vasoconstritores/efeitos adversos , Animais , Anti-Hipertensivos/farmacologia , Aorta/fisiologia , Fenômenos Biomecânicos , Bosentana , Fármacos Cardiovasculares/farmacologia , Adesão Celular , Colágeno/metabolismo , Regulação para Baixo , Endotelina-1/antagonistas & inibidores , Endotelina-1/biossíntese , Integrina beta1/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Estresse Fisiológico , Sulfonamidas/farmacologia
4.
J Biol Chem ; 285(44): 33614-22, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-20732872

RESUMO

Vascular endothelial cell (VEC) permeability is largely dependent on the integrity of vascular endothelial cadherin (VE-cadherin or VE-Cad)-based intercellular adhesions. Activators of protein kinase A (PKA) or of exchange protein activated by cAMP (EPAC) reduce VEC permeability largely by stabilizing VE-Cad-based intercellular adhesions. Currently, little is known concerning the nature and composition of the signaling complexes that allow PKA or EPAC to regulate VE-Cad-based structures and through these actions control permeability. Using pharmacological, biochemical, and cell biological approaches we identified and determined the composition and functionality of a signaling complex that coordinates cAMP-mediated control of VE-Cad-based adhesions and VEC permeability. Thus, we report that PKA, EPAC1, and cyclic nucleotide phosphodiesterase 4D (PDE4D) enzymes integrate into VE-Cad-based signaling complexes in human arterial endothelial cells. Importantly, we show that protein-protein interactions between EPAC1 and PDE4D serve to foster their integration into VE-Cad-based complexes and allow robust local regulation of EPAC1-based stabilization of VE-Cad-based adhesions. Of potential translational importance, we mapped the EPAC1 peptide motif involved in binding PDE4D and show that a cell-permeable variant of this peptide antagonizes EPAC1-PDE4D binding and directly alters VEC permeability. Collectively, our data indicate that PDE4D regulates both the activity and subcellular localization of EPAC1 and identify a novel mechanism for regulated EPAC1 signaling in these cells.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Motivos de Aminoácidos , Aterosclerose/metabolismo , Células Cultivadas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Humanos , Junções Intercelulares/metabolismo , Substâncias Macromoleculares , Peptídeos/química , Permeabilidade , Transdução de Sinais , beta Catenina/metabolismo
5.
Cell Signal ; 28(7): 741-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26658094

RESUMO

Although cAMP-signalling regulates numerous functions of vascular endothelial cells (VECs), including their ability to impact vascular resistance in response to changes in blood flow dynamics, few of the mechanisms underlying these effects have yet to be described. In addition to forming stable adherens junctions (AJs) in static VEC cultures, VE-cadherin (VECAD) has emerged as a critical component in a key mechanosensor responsible for linking altered blood flow dynamics and the VEC-mediated control of vascular resistance. Previously, a cAMP phosphodiesterase, PDE4D, was shown to coordinate the VEC permeability limiting effects of cAMP-elevating agents in human arterial VECs (HAECs). Herein, we report that PDE4D acts to allow cAMP-elevating agents to regulate VECADs' role as a sensor of flow-associated fluid shear stress (FSS)-encoded information in HAECs. Thus, we report that PDE4 activity is increased in HAECs exposed to laminar FSS and that this effect contributes to controlling how FSS impacts the morphological and gene expression changes in HAECs exposed to flow. More specifically, we report that PDE4D regulates the efficiency with which VECAD, within its mechanosensor, controls VEGFR2 and Akt activities. Indeed, we show that PDE4D knockdown (KD) significantly blunts responses of HAECs to levels of FSS characteristically found in areas of the vasculature in which stenosis is prevalent. We propose that this effect may provide a new therapeutic avenue in modulating VEC behaviour at these sites by promoting an adaptive and vasculo-protective phenotype.


Assuntos
Antígenos CD/metabolismo , Aorta/citologia , Caderinas/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Células Endoteliais/metabolismo , Resistência ao Cisalhamento , Transdução de Sinais , Forma Celular , AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Junções Intercelulares/metabolismo , Mecanotransdução Celular , Fenótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Cell Signal ; 28(6): 606-19, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26979996

RESUMO

Blood flow-associated fluid shear stress (FSS) dynamically regulates the endothelium's ability to control arterial structure and function. While arterial endothelial cells (AEC) subjected to high levels of laminar FSS express a phenotype resistant to vascular insults, those exposed to low levels of laminar FSS, or to the FSS associated with oscillatory blood flow, are less resilient. Despite numerous reports highlighting how the cAMP-signaling system controls proliferation, migration and permeability of human AECs (HAECs), its role in coordinating HAEC responses to FSS has received scant attention. Herein we show that the cAMP effector EPAC1 is required for HAECs to align and elongate in the direction of flow, and for the induction of several anti-atherogenic and anti-thrombotic genes associated with these events. Of potential therapeutic importance, EPAC1 is shown to play a dominant role the in response of HAECs to low levels of laminar FSS, such as would be found within atherosclerosis-prone areas of the vasculature. Moreover, we show that EPAC1 promotes these HAEC responses to flow by regulating Vascular Endothelial Growth Factor Receptor-2 and Akt activation, within a VE-cadherin (VECAD)/PECAM1-based mechanosensor. We submit that these findings are consistent with the novel proposition that promoting EPAC1-signaling represents a novel means through which to promote expression of an adaptive phenotype in HAECs exposed to non-adaptive FSS-encoded signals as a consequence of vascular disease.


Assuntos
Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mecanotransdução Celular , Adaptação Fisiológica , Artérias/citologia , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/fisiopatologia , Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Estresse Mecânico
7.
Virology ; 363(1): 220-8, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17321561

RESUMO

West Nile Virus (WNV) collected from 179 human blood donors in 25 US states and three Canadian provinces during the 2003 and 2004 epidemic seasons were genetically analyzed. The evolution of WNV during its Western spread was examined by envelope (E) gene sequencing of all 179 cases and full open reading frame sequencing of a subset of 20 WNV to determine if geographic and temporal segregation of distinct viral variants had occurred. Median joining network analysis was used to examine the genetic relationship between E gene variants and identified four large genetic clusters showing the gradual accumulation of mutations during the virus' western expansion. Two related WNV variants and their descendents, undetected in prior years, expanded in frequency. Apparent founder effects were observed in some regional outbreaks possibly due to local WNV colonization by a limited number of viruses. Amino acid mutations associated with newly expanding genetic variants reflect either selectively neutral mutational drift and/or mutations providing replicative advantages over the previously dominant forms of WNV.


Assuntos
Doadores de Sangue , Evolução Molecular , Filogenia , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação , Análise Mutacional de DNA , Produtos do Gene env/genética , Genoma Viral/genética , Humanos , Dados de Sequência Molecular , América do Norte/epidemiologia , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa