Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 14(4): e0215441, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30998719

RESUMO

Massively parallel sequencing technologies have made it possible to generate large quantities of sequence data. However, as research-associated information is transferred into clinical practice, cost and throughput constraints generally require sequence-specific targeted analyses. Therefore, sample enrichment methods have been developed to meet the needs of clinical sequencing applications. However, current amplification and hybrid capture enrichment methods are limited in the contiguous length of sequences for which they are able to enrich. PCR based amplification also loses methylation data and other native DNA features. We have developed a novel technology (Negative Enrichment) where we demonstrate targeting long (>10 kb) genomic regions of interest. We use the specificity of CRISPR-Cas9 single guide RNA (Cas9/sgRNA) complexes to define 5' and 3' termini of sequence-specific loci in genomic DNA, targeting 10 to 36 kb regions. The complexes were found to provide protection from exonucleases, by protecting the targeted sequences from degradation, resulting in enriched, double-strand, non-amplified target sequences suitable for next-generation sequencing library preparation or other downstream analyses.


Assuntos
Sistemas CRISPR-Cas , DNA/genética , Edição de Genes , Reação em Cadeia da Polimerase , RNA Guia de Cinetoplastídeos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
2.
Int J Genomics ; 2017: 7636513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265565

RESUMO

The horseshoe crab, Limulus polyphemus, exhibits robust circadian and circatidal rhythms, but little is known about the molecular mechanisms underlying those rhythms. In this study, horseshoe crabs were collected during the day and night as well as high and low tides, and their muscle and central nervous system tissues were processed for genome and transcriptome sequencing, respectively. The genome assembly resulted in 7.4 × 105 contigs with N50 of 4,736, while the transcriptome assembly resulted in 9.3 × 104 contigs and N50 of 3,497. Analysis of functional completeness by the identification of putative universal orthologs suggests that the transcriptome has three times more total expected orthologs than the genome. Interestingly, RNA-Seq analysis indicated no statistically significant changes in expression level for any circadian core or accessory gene, but there was significant cycling of several noncircadian transcripts. Overall, these assemblies provide a resource to investigate the Limulus clock systems and provide a large dataset for further exploration into the taxonomy and biology of the Atlantic horseshoe crab.

3.
Genetics ; 201(1): 31-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116153

RESUMO

Genetic linkage maps are critical for assembling draft genomes to a meaningful chromosome level and for deciphering the genomic underpinnings of biological traits. The estimates of recombination rates derived from genetic maps also play an important role in understanding multiple aspects of genomic evolution such as nucleotide substitution patterns and accumulation of deleterious mutations. In this study, we developed a high-throughput experimental approach that combines fluorescence-activated cell sorting, whole-genome amplification, and short-read sequencing to construct a genetic map using single-sperm cells. Furthermore, a computational algorithm was developed to analyze single-sperm whole-genome sequencing data for map construction. These methods allowed us to rapidly build a male-specific genetic map for the freshwater microcrustacean Daphnia pulex, which shows significant improvements compared to a previous map. With a total of mapped 1672 haplotype blocks and an average intermarker distance of 0.87 cM, this map spans a total genetic distance of 1451 Kosambi cM and comprises 90% of the resolved regions in the current Daphnia reference assembly. The map also reveals the mistaken mapping of seven scaffolds in the reference assembly onto chromosome II by a previous microsatellite map based on F2 crosses. Our approach can be easily applied to many other organisms and holds great promise for unveiling the intragenomic and intraspecific variation in the recombination rates.


Assuntos
Mapeamento Cromossômico/métodos , Daphnia/genética , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Espermatozoides/citologia , Algoritmos , Animais , Citometria de Fluxo , Genoma , Masculino , Polimorfismo de Nucleotídeo Único
4.
PLoS One ; 10(5): e0127519, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25996944

RESUMO

The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group.


Assuntos
Gastrópodes/classificação , Gastrópodes/genética , Genoma Mitocondrial , Filogenia , Animais , Sequência de Bases , Ordem dos Genes , Genes Mitocondriais , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa