Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(9): e0084824, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39158313

RESUMO

Xanthomonas species are major pathogens of plants and have been studied extensively. There is increasing recognition of the importance of non-pathogenic species within the same genus. With this came the need to understand the genomic and functional diversity of non-pathogenic Xanthomonas (NPX) at the species and strain level. This study reports isolation and investigation into the genomic diversity and variation in NPX isolates, chiefly Xanthomonas indica, a newly discovered NPX species from rice. The study establishes the relationship of X. indica strains within clade I of Xanthomonads with another NPX species, X. sontii, also associated with rice seeds. Identification of highly diverse strains, open-pan genome, and systematic hyper-variation at the lipopolysaccharide biosynthetic locus when compared to pathogenic Xanthomonas indicates the acquisition of new functions for adaptation. Furthermore, comparative genomics studies established the absence of major virulence genes such as type III secretion system and effectors, which are present in the pathogens, and the presence of a known bacterial-killing type IV secretion system (X-T4SS). The diverse non-pathogenic strains of X. indica and X. sontii were found to protect rice from bacterial leaf blight pathogen, X. oryzae pv. oryzae (Xoo). The absence of phenotype of an X-T4SS mutant suggests redundancy in the genetic basis of the mechanisms involved in the bioprotection function, which may include multiple genetic loci, such as putative bacteriocin-encoding gene clusters and involvement of other factors such as nutrient and niche competition apart from induction of innate immunity through shared microbial-associated molecular patterns. The rice-NPX community and its pathogenic counterpart can be a promising model for understanding plant-microbe-microbiome interaction studies.IMPORTANCEThe Xanthomonas group of bacteria is known for its characteristic lifestyle as a phytopathogen. However, the discovery of non-pathogenic Xanthomonas (NPX) species is a major shift in understanding this group of bacteria. Multi-strain, in-depth genomic, evolutionary and functional studies on each of these NPX species are still lacking. This study on diverse non-pathogenic strains provides novel insights into genome diversity, dynamics, and evolutionary trends of NPX species from rice microbiome apart from its relationship with other relatives that form a sub-clade. Interestingly, we also uncovered that NPX species protect rice from pathogenic Xanthomonas species. The plant protection property shows their importance as a part of a healthy plant microbiome. Furthermore, finding an open pan-genome and large-scale variation at lipopolysaccharide biosynthetic locus indicates a significant role of the NPX community in host adaptation. The findings and high-quality genomic resources of NPX species and the strains will allow further systematic molecular and host-associated microbial community studies for plant health.


Assuntos
Genoma Bacteriano , Genômica , Microbiota , Oryza , Xanthomonas , Xanthomonas/genética , Xanthomonas/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Filogenia
2.
Phytopathology ; : PHYTO04240141SC, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-38916954

RESUMO

Seed endophytes, particularly the abundant, core, and vertically transmitted species, are major areas of focus in host microbiome studies. Apart from being the first members to colonize, they accompany the plant throughout its development stages and to the next generation. Recently published studies have reported the keystone species to be Xanthomonas sacchari, a core endophyte that is vertically transmitted in rice with probiotic properties. Furthermore, the Xanthomonas species was reported to be involved in the assembly of beneficial bacteria after early inoculation in rice seeds. However, the strains discussed in these studies were misclassified as X. sacchari, a well-known pathogen of sugarcane. By including nonpathogenic Xanthomonas species with plant-protective functions reported from rice seeds, we have correctly established the phylogenetic and taxonomic identity of the keystone species as X. sontii. This will enable researchers to use the correct reference or lab strain of X. sontii for further systematic and in-depth studies as a model endophyte in plant-microbe interactions apart from its exploitation in seed health.

3.
Phytopathology ; 113(6): 953-959, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441870

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) is a major rice pathogen, and its genome harbors extensive inter-strain and inter-lineage variations. The emergence of highly virulent pathotypes of Xoo that can overcome major resistance (R) genes deployed in rice breeding programs is a grave threat to rice cultivation. The present study reports on a long-read Oxford nanopore-based complete genomic investigation of Xoo isolates from 11 pathotypes that are reported based on their reaction toward 10 R genes. The investigation revealed remarkable variation in the genome structure in the strains belonging to different pathotypes. Furthermore, transcription activator-like effector (TALE) proteins secreted by the type III secretion system display marked variation in content, genomic location, classes, and DNA-binding domain. We also found the association of tal genes in the vicinity of regions with genome structural variations. Furthermore, in silico analysis of the genome-wide rice targets of TALEs allowed us to understand the emergence of pathotypes compatible with major R genes. Long-read, cost-effective sequencing technologies such as nanopore can be a game changer in the surveillance of major and emerging pathotypes. The resource and findings will be invaluable in the management of Xoo and in appropriate deployment of R genes in rice breeding programs.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Doenças das Plantas/genética , Melhoramento Vegetal , Xanthomonas/genética , Oryza/genética
4.
Platelets ; 34(1): 2264940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822056

RESUMO

Multiple myeloma (MM) and its precursor states, smoldering myeloma (SM) and monoclonal gammopathy of undetermined significance (MGUS) are associated with increased incidence of thrombosis, however the cause of this is unknown. Lenalidomide treatment of MM substantially improves patient survival, although significantly increases thrombotic risk by an unknown mechanism. This pilot study aimed to establish the impact of MM and its treatment with Lenalidomide on platelet function. We analyzed platelet function in MGUS, SM and MM compared to healthy controls. We report an increase in platelet reactivity in MGUS, SM, and MM where increases in fibrinogen binding, P-selectin exposure, altered receptor expression, elevated levels of aggregation and enhanced sensitivity to agonist stimulation were observed. We also demonstrate an increase in patient platelet reactivity post Lenalidomide treatment compared to pre-treatment. We show Lenalidomide treatment of platelets ex vivo increased reactivity that was associated with formation of larger thrombi at arterial shear rates but not venous shear rates. This study demonstrates a clear increase in platelet reactivity and prothrombotic potential in patients with MGUS, SM and MM which is elevated further upon treatment with Lenalidomide. Our observations suggest that more detailed studies are warranted to determine mechanisms of thrombotic complications to enable the development of new preventative strategies that specifically target platelets.


What is the context?Multiple myeloma is associated with increased risk of thrombosis, although the potential role of platelets in this has not been evaluated.What is new?We show in this pilot study that multiple myeloma and its precursor states of smoldering myeloma and monoclonal gammopathy of undetermined significance are associated with increased levels of platelet responses. This is further exacerbated by treatment with the immunomodulatory drug lenalidomide.What is the impact?This study suggests that more detailed studies are warranted to explore the mechanisms that cause these effects in a larger population of patients, since this may reveal new approaches to prevent myeloma-associated thrombotic complications.


Assuntos
Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Trombose , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/complicações , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Projetos Piloto , Trombose/complicações , Gamopatia Monoclonal de Significância Indeterminada/complicações
5.
Curr Microbiol ; 80(12): 387, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878083

RESUMO

A bacterial strain designated as UC was isolated from farmland soil. Strain UCT formed a pale yellow colony on nutrient agar. Cell morphology revealed it as the rod-shaped bacterium that stained Gram-negative. The 16S rRNA gene sequence analysis identified strain UCT as a member of the genus Lysobacter that showed high identity with L. soli DCY21T (99.5%), L. panacisoli CJ29T (98.7%), and L. tabacisoli C8-1T (97.9%). It formed a distinct cluster with these strains in the neighbor-joining phylogenetic tree. A similar tree topology was observed in TYGS-based phylogenomic analysis. However, genome sequence analyses of strain UCT showed 87.7% average nucleotide identity and 34.7% digital DNA-DNA hybridization similarity with the phylogenetically closest species, L. soli DCY21T. The similarity was much less with other closely related strains of the genus Lysobacter. The G + C content of strain UCT was 68.1%. Major cellular fatty acids observed were C14:0 iso (13.4%), C15:0 iso (13.6%), and C15:0 anteiso (14.8%). Quinone Q-8 was the major respiratory ubiquinone. Predominant polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. Production of xanthomonadin pigment was observed. Based on phenotypic differences and phylogenomic analysis, strain UCT represents a novel species of the genus Lysobacter, for which the name Lysobacter arvi is proposed. The type strain of the novel species is UCT (= KCTC 92613T = JCM 23757T = MTCC 12824T).


Assuntos
Lysobacter , Fazendas , Lysobacter/genética , Filogenia , RNA Ribossômico 16S/genética , DNA
6.
Curr Microbiol ; 79(10): 304, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064810

RESUMO

Xanthomonas is a major group of pathogenic bacteria infecting staple food crops like rice. Increasingly it is being recognized that non-pathogenic Xanthomonas (NPX) are also important members of a healthy plant microbiome. However, the vast majority of the species described in this genus are of pathogenic nature, and only a few NPX species have been reported till now. Genomic and taxonogenomic analysis of NPX is needed for the management of this important group of bacteria. In this study, two yellow-pigmented bacterial isolates were obtained from healthy rice seeds in Punjab, India. The isolates designated PPL560T and PPL568 were identified as members of the genus Xanthomonas based on biochemical tests and 16S rRNA gene sequence analysis retrieved from the whole-genome sequences. Isolates formed a distinct monophyletic lineage with Xanthomonas sontii and Xanthomonas sacchari as the closest relatives in the phylogenetic tree based on core gene content shared by the representative species of the genus Xanthomonas. Pairwise ortho Average Nucleotide Identity and digital DNA-DNA hybridization values calculated against other species of Xanthomonas were below their respective cut-offs. In planta studies revealed that PPL560T and PPL568 are non-pathogenic to rice plants upon leaf clip inoculation. The absence of type III secretion system-related genes and effectors further supported their non-pathogenic status. Herein, we propose Xanthomonas indica sp. nov. as novel species of the genus Xanthomonas with PPL560T = MTCC 13185 = CFBP 9039 = ICMP 24394 as its type strain and PPL568 as another constituent member.


Assuntos
Oryza , Xanthomonas , DNA Bacteriano/química , DNA Bacteriano/genética , Oryza/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Sementes , Xanthomonas/genética
7.
Blood ; 125(4): 720-30, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25370417

RESUMO

The Eph kinases, EphA4 and EphB1, and their ligand, ephrinB1, have been previously reported to be present in platelets where they contribute to thrombus stability. Although thrombus formation allows for Eph-ephrin engagement and bidirectional signaling, the importance specifically of Eph kinase or ephrin signaling in regulating platelet function remained unidentified. In the present study, a genetic approach was used in mice to establish the contribution of signaling orchestrated by the cytoplasmic domain of EphB2 (a newly discovered Eph kinase in platelets) in platelet activation and thrombus formation. We conclude that EphB2 signaling is involved in the regulation of thrombus formation and clot retraction. Furthermore, the cytoplasmic tail of this Eph kinase regulates initial platelet activation in a contact-independent manner in the absence of Eph-ephrin ligation between platelets. Together, these data demonstrate that EphB2 signaling not only modulates platelet function within a thrombus but is also involved in the regulation of the function of isolated platelets in a contact-independent manner.


Assuntos
Coagulação Sanguínea/fisiologia , Plaquetas/enzimologia , Ativação Plaquetária/fisiologia , Receptor EphB2/metabolismo , Transdução de Sinais/fisiologia , Animais , Plaquetas/citologia , Camundongos , Camundongos Transgênicos , Receptor EphB2/genética
8.
Environ Microbiol Rep ; 15(6): 716-726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37254648

RESUMO

Xanthomonas citri pv. viticola (Xcv) is the causal agent of bacterial canker in grapevine. The pathogen is restricted to India, where it was first reported in the 1970s, and Brazil. In the present study, we report the first complete genome sequence of Xcv LMG965, which is a reference pathotype strain. We also report genome sequences of additional isolates from India and comparative genome-based studies of isolates from Brazil. Apart from revealing the monophyletic origin of the pathovar, we could also confirm a common frameshift mutation in a gene that is part of the Xanthomonadin pigment biosynthetic gene cluster in all the isolates. The comparative study also revealed multiple intrinsic copper resistance-related genes in Brazilian isolates, suggesting intense selection, possibly because of heavy and indiscriminate usage of copper as an antimicrobial agent in the orchards. There is also the association of a Tn3-like transposase in the vicinity of the copper resistance genes, indicating a potential for rapid diversification through horizontal gene transfer events. The findings, along with genomic resources, will allow for systematic genetic and functional studies of Xcv.


Assuntos
Cobre , Xanthomonas , Cobre/farmacologia , Xanthomonas/genética , Genômica , Transferência Genética Horizontal , Doenças das Plantas/microbiologia
9.
Front Cell Infect Microbiol ; 13: 1151594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153161

RESUMO

Introduction: Burkholderia cepacia complex (Bcc) clonal complex (CC) 31, the predominant lineage causing devastating outbreaks globally, has been a growing concern of infections in non-cystic fibrosis (NCF) patients in India. B. cenocepacia is very challenging to treat owing to its virulence determinants and antibiotic resistance. Improving the management of these infections requires a better knowledge of their resistance patterns and mechanisms. Methods: Whole-genome sequences of 35 CC31 isolates obtained from patient samples, were analyzed against available 210 CC31 genomes in the NCBI database to glean details of resistance, virulence, mobile elements, and phylogenetic markers to study genomic diversity and evolution of CC31 lineage in India. Results: Genomic analysis revealed that 35 isolates belonging to CC31 were categorized into 11 sequence types (ST), of which five STs were reported exclusively from India. Phylogenetic analysis classified 245 CC31 isolates into eight distinct clades (I-VIII) and unveiled that NCF isolates are evolving independently from the global cystic fibrosis (CF) isolates forming a distinct clade. The detection rate of seven classes of antibiotic-related genes in 35 isolates was 35 (100%) for tetracyclines, aminoglycosides, and fluoroquinolones; 26 (74.2%) for sulphonamides and phenicols; 7 (20%) for beta-lactamases; and 1 (2.8%) for trimethoprim resistance genes. Additionally, 3 (8.5%) NCF isolates were resistant to disinfecting agents and antiseptics. Antimicrobial susceptibility testing revealed that majority of NCF isolates were resistant to chloramphenicol (77%) and levofloxacin (34%). NCF isolates have a comparable number of virulence genes to CF isolates. A well-studied pathogenicity island of B. cenocepacia, GI11 is present in ST628 and ST709 isolates from the Indian Bcc population. In contrast, genomic island GI15 (highly similar to the island found in B. pseudomallei strain EY1) is exclusively reported in ST839 and ST824 isolates from two different locations in India. Horizontal acquisition of lytic phage ST79 of pathogenic B. pseudomallei is demonstrated in ST628 isolates Bcc1463, Bcc29163, and BccR4654 amongst CC31 lineage. Discussion: The study reveals a high diversity of CC31 lineages among B. cenocepacia isolates from India. The extensive information from this study will facilitate the development of rapid diagnostic and novel therapeutic approaches to manage B. cenocepacia infections.


Assuntos
Anti-Infecciosos , Infecções por Burkholderia , Burkholderia cenocepacia , Complexo Burkholderia cepacia , Sepse , Humanos , Burkholderia cenocepacia/genética , Filogenia , Infecções por Burkholderia/epidemiologia , Complexo Burkholderia cepacia/genética , Genômica , Fibrose
10.
Access Microbiol ; 4(10): acmi000415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415734

RESUMO

Xanthomonas is a highly evolved group of phytopathogenic bacteria infecting nearly 400 host plants having vast genomic resources available with heterogenicity in representation from different species and pathovars. Unfortunately, the wealth of data is extremely biased and restricted to a few Xanthomonas pathogens that infect economically important plants, while those reported to infect the most diverse plants remain neglected. In the present study, we report the first complete genome sequence of Xanthomonas citri pv. durantae that was reported to infect Duranta repens L. or golden dewdrop, a hedge plant of ornamental importance native to the American region. Phylogenomic analysis with its closest relatives placed it amongst X. citri pv. citri A* pathotype strains and further comparative studies revealed various large unique genomic regions of chromosomal origin. The association of integrative and conjugative elements and prophages with unique genomic regions suggests the role of mobilome in genome dynamics. A large number of IS elements and transcription activator-like effectors encoding genes on each of the four plasmids indicate the further scope of diversification in Xanthomonas .

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa