Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Rev Lett ; 129(18): 180504, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36374697

RESUMO

The ability to control microwave emission from a spin ensemble is a requirement of several quantum memory protocols. Here, we demonstrate such ability by using a resonator whose frequency can be rapidly tuned with a bias current. We store excitations in an ensemble of rare-earth ions and suppress on demand the echo emission ("echo silencing") by two methods: (1) detuning the resonator during the spin rephasing, and (2) subjecting spins to magnetic field gradients generated by the bias current itself. We also show that spin coherence is preserved during silencing.

2.
Nature ; 526(7573): 415-20, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26444241

RESUMO

A promising route to the synthesis of protein-mimetic materials that are capable of complex functions, such as molecular recognition and catalysis, is provided by sequence-defined peptoid polymers--structural relatives of biologically occurring polypeptides. Peptoids, which are relatively non-toxic and resistant to degradation, can fold into defined structures through a combination of sequence-dependent interactions. However, the range of possible structures that are accessible to peptoids and other biological mimetics is unknown, and our ability to design protein-like architectures from these polymer classes is limited. Here we use molecular-dynamics simulations, together with scattering and microscopy data, to determine the atomic-resolution structure of the recently discovered peptoid nanosheet, an ordered supramolecular assembly that extends macroscopically in only two dimensions. Our simulations show that nanosheets are structurally and dynamically heterogeneous, can be formed only from peptoids of certain lengths, and are potentially porous to water and ions. Moreover, their formation is enabled by the peptoids' adoption of a secondary structure that is not seen in the natural world. This structure, a zigzag pattern that we call a Σ('sigma')-strand, results from the ability of adjacent backbone monomers to adopt opposed rotational states, thereby allowing the backbone to remain linear and untwisted. Linear backbones tiled in a brick-like way form an extended two-dimensional nanostructure, the Σ-sheet. The binary rotational-state motif of the Σ-strand is not seen in regular protein structures, which are usually built from one type of rotational state. We also show that the concept of building regular structures from multiple rotational states can be generalized beyond the peptoid nanosheet system.


Assuntos
Materiais Biomiméticos/química , Nanoestruturas/química , Peptoides/química , Rotação , Motivos de Aminoácidos , Materiais Biomiméticos/síntese química , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptoides/síntese química , Polímeros/síntese química , Polímeros/química , Porosidade , Estrutura Secundária de Proteína , Água
3.
Phys Rev Lett ; 125(21): 210505, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33274991

RESUMO

We report long coherence times (up to 300 ms) for near-surface bismuth donor electron spins in silicon coupled to a superconducting microresonator, biased at a clock transition. This enables us to demonstrate the partial absorption of a train of weak microwave fields in the spin ensemble, their storage for 100 ms, and their retrieval, using a Hahn-echo-like protocol. Phase coherence and quantum statistics are preserved in the storage.

4.
Proc Natl Acad Sci U S A ; 112(18): 5591-6, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901326

RESUMO

Multiple organic functionalities can now be apportioned into nanoscale domains within a metal-coordinated framework, posing the following question: how do we control the resulting combination of "heterogeneity and order"? Here, we report the creation of a metal-organic framework, MOF-2000, whose two component types are incorporated in a 2:1 ratio, even when the ratio of component types in the starting solution is varied by an order of magnitude. Statistical mechanical modeling suggests that this robust 2:1 ratio has a nonequilibrium origin, resulting from kinetic trapping of component types during framework growth. Our simulations show how other "magic number" ratios of components can be obtained by modulating the topology of a framework and the noncovalent interactions between component types, a finding that may aid the rational design of functional multicomponent materials.


Assuntos
Simulação por Computador , Metais/química , Modelos Moleculares , Compostos Organometálicos/química , Algoritmos , Cristalografia por Raios X , Cinética , Espectroscopia de Ressonância Magnética , Modelos Químicos , Estrutura Molecular , Método de Monte Carlo , Soluções , Termodinâmica
5.
Acc Chem Res ; 49(3): 379-89, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26741294

RESUMO

Two-dimensional (2D) atomically defined organic nanomaterials are an important material class with broad applications. However, few general synthetic methods exist to produce such materials in high yields and to precisely functionalize them. One strategy to form ordered 2D organic nanomaterials is through the supramolecular assembly of sequence-defined synthetic polymers. Peptoids, one such class of polymer, are designable bioinspired heteropolymers whose main-chain length and monomer sequence can be precisely controlled. We have recently discovered that individual peptoid polymers with a simple sequence of alternating hydrophobic and ionic monomers can self-assemble into highly ordered, free-floating nanosheets. A detailed understanding of their molecular structure and supramolecular assembly dynamics provides a robust platform for the discovery of new classes of nanosheets with tunable properties and novel applications. In this Account, we discuss the discovery, characterization, assembly, molecular modeling, and functionalization of peptoid nanosheets. The fundamental properties of peptoid nanosheets, their mechanism of formation, and their application as robust scaffolds for molecular recognition and as templates for the growth of inorganic minerals have been probed by an arsenal of experimental characterization techniques (e.g., scanning probe, electron, and optical microscopy, X-ray diffraction, surface-selective vibrational spectroscopy, and surface tensiometry) and computational techniques (coarse-grained and atomistic modeling). Peptoid nanosheets are supramolecular assemblies of 16-42-mer chains that form molecular bilayers. They span tens of microns in lateral dimensions and freely float in water. Their component chains are highly ordered, with chains nearly fully extended and packed parallel to one another as a result of hydrophobic and electrostatic interactions. Nanosheets form via a novel interface-catalyzed monolayer collapse mechanism. Peptoid chains first assemble into a monolayer at either an air-water or oil-water interface, on which peptoid chains extend, order, and pack into a brick-like pattern. Upon mechanical compression of the interface, the monolayer buckles into stable bilayer structures. Recent work has focused on the design of nanosheets with tunable properties and functionality. They are readily engineerable, as functional monomers can be readily incorporated onto the nanosheet surface or into the interior. For example, functional hydrophilic "loops" have been displayed on the surfaces of nanosheets. These loops can interact with specific protein targets, serving as a potentially general platform for molecular recognition. Nanosheets can also bind metal ions and serve as 2D templates for mineral growth. Through our understanding of the formation mechanism, along with predicted features ascertained from molecular modeling, we aim to further design and synthesize nanosheets as robust protein mimetics with the potential for unprecedented functionality and stability.


Assuntos
Nanoestruturas , Peptoides/química , Engenharia de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência , Difração de Raios X
6.
Lett Appl Microbiol ; 65(1): 2-10, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28421612

RESUMO

As virulence of many pathogenic bacteria is regulated by the phenomenon of quorum sensing (QS), the present study aimed to find the QS-inhibiting (QS-I) property (if any) in 61 Indian medicinal plants. The presence of QS-I compound in the leaf extract was evaluated by its ability to inhibit production of pigment in Chromobacterium violaceum MTCC 2656 (violacein) and Pseudomonas aeruginosa MTCC 2297 (pyocyanin) or swarming of P. aeruginosa MTCC 2297. Extracts of three plants, Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis, have shown a dose-dependent inhibition of violacein production with no negative effect on bacterial growth. Inhibition of pyocyanin pigment production and swarming motility in P. aeruginosa MTCC 2297 was also shown. Based on the results obtained by gas chromatography-mass spectroscopy (GC-MS) and thin-layer chromatography-direct bioautography (TLC-DB), it was concluded that triterpenes and flavonoid compounds found in the three plant extracts could have QS-I activity. SIGNIFICANCE AND IMPACT OF THE STUDY: A novel alternative prospect to prevent bacterial infections without inhibiting the growth is to apply chemicals that inhibit quorum sensing mechanism of the pathogens. Antiquorum property of 61 medicinal plants was evaluated by the ability of their leaf extract(s) to inhibit production of pigment (violacein in Chromobacterium violaceum MTCC 2656, pyocyanin in Pseudomonas aeruginosa MTCC 2297) or swarming in P. aeruginosa MTCC 2297. The most prospective plants (for the development of quorum sensing inhibitor), showing inhibition of violacein production without affecting bacterial growth, were Astilbe rivularis, Fragaria nubicola and Osbeckia nepalensis.


Assuntos
Chromobacterium/efeitos dos fármacos , Flavonoides/farmacologia , Indóis/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , Piocianina/biossíntese , Percepção de Quorum/efeitos dos fármacos , Triterpenos/farmacologia , Antibacterianos/farmacologia , Fragaria/química , Medicina Tradicional , Melastomataceae/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plantas Medicinais/química , Estudos Prospectivos , Saxifragaceae/química
7.
J Struct Biol ; 196(3): 299-308, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27480508

RESUMO

It is well accepted that, in general, protein structural similarity is strongly related to the amino acid sequence identity. To analyze in great detail the correlation, distribution and variation levels of conserved residues in the protein structure, we analyzed all available high-resolution structural data of 5245 cellular complex-forming proteins and 293 spherical virus capsid proteins (VCPs). We categorized and compare them in terms of protein structural regions. In all cases, the buried core residues are the most conserved, followed by the residues at the protein-protein interfaces. The solvent-exposed surface shows greater sequence variations. Our results provide evidence that cellular monomers and VCPs could be two extremes in the quaternary structural space, with cellular dimers and oligomers in between. Moreover, based on statistical analysis, we detected a distinct group of icosahedral virus families whose capsid proteins seem to evolve much slower than the rest of the protein complexes analyzed in this work.


Assuntos
Proteínas do Capsídeo/ultraestrutura , Sequência Conservada , Homologia Estrutural de Proteína , Proteínas Virais/química , Sequência de Aminoácidos/genética , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência , Vírus/genética
8.
J Chem Phys ; 143(21): 214902, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646886

RESUMO

For two-component assemblies, an inherent structure diagram (ISD) is the relationship between set inter-subunit energies and the types of kinetic traps (inherent structures) one may obtain from those energies. It has recently been shown that two-component ISDs are apportioned into regions or plateaux within which inherent structures display uniform features (e.g., stoichometries and morphologies). Interestingly, structures from one of the plateaux were also found to be robust outcomes of one type of non-equilibrium growth, which indicates the usefulness of the two-component ISD in predicting outcomes of some types of far-from-equilibrium growth. However, little is known as to how the ISD is apportioned into distinct plateaux. Also, while each plateau displays classes of structures that are morphologically distinct, little is known about the source of these distinct morphologies. This article outlines an analytic treatment of the two-component ISD and shows that the manner in which any ISD is apportioned arises from a single unitless order parameter. Additionally, the analytical framework allows for the characterization of local properties of the trapped structures within each ISD plateau. This work may prove to be useful in the design of novel classes of robust nonequilibrium assemblies.

9.
J Comput Chem ; 35(5): 360-70, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24293222

RESUMO

Peptoids are positional isomers of peptides: peptoid sidechains are attached to backbone nitrogens rather than α-carbons. Peptoids constitute a class of sequence-specific polymers resistant to biological degradation and potentially as diverse, structurally and functionally, as proteins. While molecular simulation of proteins is commonplace, relatively few tools are available for peptoid simulation. Here, we present a first-generation atomistic forcefield for peptoids. Our forcefield is based on the peptide forcefield CHARMM22, with key parameters tuned to match both experimental data and quantum mechanical calculations for two model peptoids (dimethylacetamide and a sarcosine dipeptoid). We used this forcefield to demonstrate that solvation of a dipeptoid substantially modifies the conformations it can access. We also simulated a crystal structure of a peptoid homotrimer, H-(N-2-phenylethyl glycine)3 -OH, and we show that experimentally observed structural and dynamical features of the crystal are accurately described by our forcefield. The forcefield presented here provides a starting point for future development of peptoid-specific simulation methods within CHARMM.


Assuntos
Simulação de Dinâmica Molecular , Peptoides/química , Software , Conformação Proteica , Teoria Quântica
10.
Soft Matter ; 10(34): 6404-16, 2014 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-25005537

RESUMO

We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.


Assuntos
Modelos Teóricos , Simulação por Computador , DNA/química
11.
Phys Rev Lett ; 110(6): 067004, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432295

RESUMO

We study spin relaxation and diffusion in an electron-spin ensemble of nitrogen impurities in diamond at low temperature (0.25-1.2 K) and polarizing magnetic field (80-300 mT). Measurements exploit field-controlled coupling of the ensemble to two modes of a transmission-line resonator. The observed temperature-independent spin relaxation time indicates that spin outdiffusion across the mode volume dominates over spin-lattice relaxation. Depolarization of one hyperfine-split subensemble by pumping of another indicates fast cross relaxation, with implications for the use of subensembles as independent quantum memories.

12.
PLoS Comput Biol ; 8(12): e1002839, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300421

RESUMO

Despite progresses in ancestral protein sequence reconstruction, much needs to be unraveled about the nature of the putative last common ancestral proteome that served as the prototype of all extant lifeforms. Here, we present data that indicate a steady decline (oil escape) in proteome hydrophobicity over species evolvedness (node number) evident in 272 diverse proteomes, which indicates a highly hydrophobic (oily) last common ancestor (LCA). This trend, obtained from simple considerations (free from sequence reconstruction methods), was corroborated by regression studies within homologous and orthologous protein clusters as well as phylogenetic estimates of the ancestral oil content. While indicating an inherent irreversibility in molecular evolution, oil escape also serves as a rare and universal reaction-coordinate for evolution (reinforcing Darwin's principle of Common Descent), and may prove important in matters such as (i) explaining the emergence of intrinsically disordered proteins, (ii) developing composition- and speciation-based "global" molecular clocks, and (iii) improving the statistical methods for ancestral sequence reconstruction.


Assuntos
Óleos , Proteoma , Evolução Molecular , Transferência Genética Horizontal , Filogenia , Recombinação Genética
13.
Phys Rev Lett ; 108(8): 087802, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463575

RESUMO

Using first-principles simulations, we identify the microscopic origin of the nonlinear dielectric response and high energy density of polyvinylidene-fluoride-based polymers as a cooperative transition path that connects nonpolar and polar phases of the system. This path explores a complex torsional and rotational manifold and is thermodynamically and kinetically accessible at relatively low temperatures. Furthermore, the introduction of suitable copolymers significantly alters the energy barriers between phases providing tunability of both the energy density and the critical fields.

14.
Proc Natl Acad Sci U S A ; 106(21): 8531-6, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19439655

RESUMO

Spherical capsids are shells of protein subunits that protect the genomes of many viral strains. Although nature displays a range of spherical capsid sizes (reflected by the number of subunits in the formation), specific strains display stringent requirements for forming capsids of specific sizes, a requirement that appears crucial to infectivity. Despite its importance in pathogenicity, little is known regarding the determinants of capsid size. Still less is known about exactly which capsids can undergo maturation events such as buckling transitions--postcapsid-assembly events that are crucial to some virus strains. We show that the exclusive determinant of capsid size is hexamer shape, as defined by subunit-subunit dihedral angles. This conclusion arises from considering the dihedral angle patterns within hexamers belonging to natural canonical capsids and geometric capsid models (deltahedra). From simple geometric models and an understanding of endo angle propagation discussed here, we then suggest that buckling transitions may be available only to capsids of certain size (specifically, T < 7 capsids are precluded from such transformations) and that T > 7 capsids require the help of auxiliary mechanisms for proper capsid formation. These predictions, arising from simple geometry and modeling, are backed by a body of empirical evidence, further reinforcing the extent to which the evolution of the atomistically complex virus capsid may be principled around simple geometric design/requirements.


Assuntos
Capsídeo/química , Cristalografia por Raios X , Especificidade por Substrato , Proteínas Virais/química
15.
J Calif Dent Assoc ; 40(1): 65-78, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22439491

RESUMO

The objective of the current study was to systematically evaluate the existing evidence in relation to the safety, quality, productivity or cost-benefit, and patient satisfaction of the procedures performed by the different groups of dental providers. Due to the diversity of the procedures performed and the outcomes measured, it was not possible to create pooled estimates in a meaningful manner. Therefore, summary results of individual studies are presented and critically evaluated.


Assuntos
Atenção à Saúde , Auxiliares de Odontologia , Assistência Odontológica , Segurança do Paciente , Qualidade da Assistência à Saúde , Análise Custo-Benefício , Atenção à Saúde/economia , Atenção à Saúde/organização & administração , Atenção à Saúde/normas , Auxiliares de Odontologia/economia , Auxiliares de Odontologia/organização & administração , Auxiliares de Odontologia/normas , Assistência Odontológica/economia , Assistência Odontológica/organização & administração , Assistência Odontológica/normas , Eficiência Organizacional , Humanos , Satisfação do Paciente , Qualidade da Assistência à Saúde/economia , Qualidade da Assistência à Saúde/organização & administração , Qualidade da Assistência à Saúde/normas
16.
J Neonatal Perinatal Med ; 15(4): 859-861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35342049

RESUMO

Emphysematous gastritis is a rare and life-threatening condition caused by gastric inflammation and intramural gas formation, most often diagnosed through radiological evidence of a radiolucent shadow in the stomach wall in the clinical scenario of severe sickness. We report a case of emphysematous gastritis secondary to early-onset neonatal sepsis in a newborn which, to the best of our knowledge, has not otherwise been reported. Is it very rare or do we just miss it?


Assuntos
Enfisema , Gastrite , Sepse Neonatal , Recém-Nascido , Humanos , Enfisema/diagnóstico por imagem , Enfisema/complicações , Gastrite/diagnóstico , Gastrite/diagnóstico por imagem , Sepse Neonatal/tratamento farmacológico , Sepse Neonatal/complicações
17.
J Magn Reson ; 310: 106662, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31837553

RESUMO

In EPR, spin relaxation is typically governed by interactions with the lattice or other spins. However, it has recently been shown that given a sufficiently strong spin-resonator coupling and high resonator quality factor, the spontaneous emission of microwave photons from the spins into the resonator can become the main relaxation mechanism, as predicted by Purcell. With increasing attention on the use of microresonators for EPR to achieve high spin-number sensitivity it is important to understand how this novel regime influences measured EPR signals, for example the amplitude and temporal shape of the spin-echo. We study this regime theoretically and experimentally, using donor spins in silicon, under different conditions of spin-linewidth and coupling homogeneity. When the spin-resonator coupling is distributed inhomogeneously, we find that the effective spin-echo relaxation time measured in a saturation recovery sequence strongly depends on the parameters for the detection echo. When the spin linewidth is larger than the resonator bandwidth, the different Fourier components of the spin echo relax with different characteristic times - due to the role of the resonator in driving relaxation - which results in the temporal shape of the echo becoming dependent on the repetition time of the experiment.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 1): 051902, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643097

RESUMO

Virus capsids are highly specific assemblies that are formed from a large number of often chemically identical capsid subunits. In the present paper we ask to what extent these structures can be viewed as mathematically tilable objects using a single two-dimensional tile. We find that spherical viruses from a large number of families-eight out of the twelve studied-qualitatively possess properties that allow their representation as two-dimensional monohedral tilings of a bound surface, where each tile represents a subunit. This we did by characterizing the extent to which individual spherical capsids display subunit-subunit (1) holes, (2) overlaps, and (3) gross structural variability. All capsids with T numbers greater than 1 from the Protein Data Bank, with homogeneous protein composition, were used in the study. These monohedral tilings, called canonical capsids due to their platonic (mathematical) form, offer a mathematical segue into the structural and dynamical understanding of not one, but a large number of virus capsids. From our data, it appears as though one may only break the long-standing rules of quasiequivalence by the introduction of subunit-subunit structural variability, holes, and gross overlaps into the shell. To explore the utility of canonical capsids in understanding structural aspects of such assemblies, we used graph theory and discrete geometry to enumerate the types of shapes that the tiles (and hence the subunits) must possess. We show that topology restricts the shape of the face to a limited number of five-sided prototiles, one of which is the "bisected trapezoid" that is a platonic representation of the most ubiquitous capsid subunit shape seen in nature (the trapezoidal jelly-roll motif). This motif is found in a majority of seemingly unrelated virus families that share little to no host, size, or amino acid sequence similarity. This suggests that topological constraints may exhibit dominant roles in the natural design of biological assemblies, while having little effect on amino acid sequence similarity.


Assuntos
Capsídeo/fisiologia , Capsídeo/ultraestrutura , Modelos Anatômicos , Modelos Biológicos , Capsídeo/química , Simulação por Computador , Conformação Molecular
19.
PeerJ ; 5: e3327, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533975

RESUMO

The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom-the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a function of φ and ψ has not been completely described for both cis and trans backbones. Additionally, little intuitive understanding is available about a peptide's conformation simply from knowing the φ and ψ values of a peptide (e.g., is the regular peptide defined by φ = ψ =  - 100°  left-handed or right-handed?). This report provides a new metric for backbone handedness (h) based on interpreting a peptide backbone as a helix with axial displacement d and angular displacement θ, both of which are derived from a peptide backbone's internal coordinates, especially dihedral angles φ, ψ and ω. In particular, h equals sin(θ)d∕|d|, with range [-1, 1] and negative (or positive) values indicating left(or right)-handedness. The metric h is used to characterize the handedness of every region of the Ramachandran plot for both cis (ω = 0°) and trans (ω = 180°) backbones, which provides the first exhaustive survey of twist handedness in Ramachandran (φ, ψ) space. These maps fill in the 'dead space' within the Ramachandran plot, which are regions that are not commonly accessed by structured proteins, but which may be accessible to intrinsically disordered proteins, short peptide fragments, and protein mimics such as peptoids. Finally, building on the work of (Zacharias & Knapp, 2013), this report presents a new plot based on d and θ that serves as a universal and intuitive alternative to the Ramachandran plot. The universality arises from the fact that the co-inhabitants of such a plot include every possible peptide backbone including cis and trans backbones. The intuitiveness arises from the fact that d and θ provide, at a glance, numerous aspects of the backbone including compactness, handedness, and planarity.

20.
Phys Rev E ; 93: 042136, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27176283

RESUMO

The growth of multicomponent structures in simulations and experiments often results in kinetically trapped, nonequilibrium objects. In such cases we have no general theoretical framework for predicting the outcome of the growth process. Here we use computer simulations to study the growth of two-component structures within a simple lattice model. We show that kinetic trapping happens for many choices of growth rate and intercomponent interaction energies, and that qualitatively distinct kinds of kinetic trapping are found in different regions of parameter space. In a region in which the low-energy structure is an "antiferromagnet" or "checkerboard," we show that the grown nonequilibrium structure displays a component-type stoichiometry that is different from the equilibrium one but is insensitive to growth rate and solution conditions. This robust nonequilibrium stoichiometry can be predicted via a mapping to the jammed random tiling of dimers studied by Flory, a finding that suggests a way of making defined nonequilibrium structures in experiment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa