Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biomech Eng ; 146(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38270963

RESUMO

The majority of manual wheelchair users (MWCU) develop shoulder pain or injuries, which is often caused by impingement. Because propulsion mechanics are influenced by the recovery hand pattern used, the pattern may affect shoulder loading and susceptibility to injury. Shoulder muscle weakness is also correlated with shoulder pain, but how shoulder loading changes with specific muscle group weakness is unknown. Musculoskeletal modeling and simulation were used to compare glenohumeral joint contact forces (GJCFs) across hand patterns and determine how GJCFs vary when primary shoulder muscle groups are weakened. Experimental data were analyzed to classify individuals into four hand pattern groups. A representative musculoskeletal model was then developed for each group and simulations generated to portray baseline strength and six muscle weakness conditions. Three-dimensional GJCF peaks and impulses were compared across hand patterns and muscle weakness conditions. The semicircular pattern consistently had lower shear (anterior-posterior and superior-inferior) GJCFs compared to other patterns. The double-loop pattern had the highest superior GJCFs, while the single-loop pattern had the highest anterior and posterior GJCFs. These results suggest that using the semicircular pattern may be less susceptible to shoulder injuries such as subacromial impingement. Weakening the internal rotators and external rotators resulted in the greatest increases in shear GJCFs and decreases in compressive GJCF, likely due to decreased force from rotator cuff muscles. These findings suggest that strengthening specific muscle groups, especially the rotator cuff, is critical for decreasing the risk of shoulder overuse injuries.


Assuntos
Articulação do Ombro , Cadeiras de Rodas , Humanos , Articulação do Ombro/fisiologia , Ombro , Dor de Ombro/etiologia , Manguito Rotador/fisiologia , Debilidade Muscular/complicações , Fenômenos Biomecânicos
2.
J Exp Biol ; 218(Pt 19): 3010-22, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26254324

RESUMO

Locomotor control mechanisms must flexibly adapt to both anticipated and unexpected terrain changes to maintain movement and avoid a fall. Recent studies revealed that ground birds alter movement in advance of overground obstacles, but not treadmill obstacles, suggesting context-dependent shifts in the use of anticipatory control. We hypothesized that differences between overground and treadmill obstacle negotiation relate to differences in visual sensory information, which influence the ability to execute anticipatory manoeuvres. We explored two possible explanations: (1) previous treadmill obstacles may have been visually imperceptible, as they were low contrast to the tread, and (2) treadmill obstacles are visible for a shorter time compared with runway obstacles, limiting time available for visuomotor adjustments. To investigate these factors, we measured electromyographic activity in eight hindlimb muscles of the guinea fowl (Numida meleagris, N=6) during treadmill locomotion at two speeds (0.7 and 1.3 m s(-1)) and three terrain conditions at each speed: (i) level, (ii) repeated 5 cm low-contrast obstacles (<10% contrast, black/black), and (iii) repeated 5 cm high-contrast obstacles (>90% contrast, black/white). We hypothesized that anticipatory changes in muscle activity would be higher for (1) high-contrast obstacles and (2) the slower treadmill speed, when obstacle viewing time is longer. We found that treadmill speed significantly influenced obstacle negotiation strategy, but obstacle contrast did not. At the slower speed, we observed earlier and larger anticipatory increases in muscle activity and shifts in kinematic timing. We discuss possible visuomotor explanations for the observed context-dependent use of anticipatory strategies.


Assuntos
Galliformes/fisiologia , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Desempenho Psicomotor/fisiologia , Corrida/fisiologia , Percepção Visual , Animais , Fenômenos Biomecânicos , Eletromiografia , Marcha , Membro Posterior/fisiologia , Músculo Esquelético/inervação , Equilíbrio Postural
3.
Clin Biomech (Bristol, Avon) ; 107: 106025, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37302302

RESUMO

BACKGROUND: Femoroacetabular impingement is characterized by premature contact between the proximal femur and acetabulum. The loss of femoral head-neck concavity associated with cam morphology leads to mechanical impingement during hip flexion and internal rotation. Other femoral and acetabular features have been linked with mechanical impingement but have not been comprehensively investigated. This study sought to determine which bony features are most influential in contributing to mechanical impingement in persons with a cam morphology. METHODS: Twenty individuals (10 female, 10 male) with a cam morphology participated. Finite element analyses incorporating subject-specific bony geometry derived from computed tomography scans were used to determine which femoral (alpha angle and femoral neck-shaft angle) and acetabular (anteversion angle, inclination angle, depth, and lateral center-edge angle) features accentuate acetabular contact pressure with increasing degrees of hip internal rotation with the hip flexed to 90°. To determine the best predictors of acetabular contact pressure sensitivity to internal rotation, all morphological variables were included in a stepwise regression with the final model subjected to a bootstrapping procedure. FINDINGS: The stepwise regression revealed that femoral neck-shaft angle, acetabular anteversion angle, acetabular inclination angle, and acetabular depth were the best combination of variables to predict contact pressure sensitivity to internal rotation, explaining 55% of the variance. Results of the bootstrap analysis revealed that a median value of 65% [37%, 89%] variance in sensitivity could be explained by these morphological variables. INTERPRETATION: Mechanical impingement and the concomitant acetabular contact pressure are modulated by multiple femoral and acetabular features in persons with a cam morphology.


Assuntos
Acetábulo , Impacto Femoroacetabular , Masculino , Humanos , Feminino , Acetábulo/diagnóstico por imagem , Articulação do Quadril/diagnóstico por imagem , Análise de Elementos Finitos , Fêmur/diagnóstico por imagem , Impacto Femoroacetabular/diagnóstico por imagem , Amplitude de Movimento Articular
4.
Bioinspir Biomim ; 17(4)2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35533656

RESUMO

Serially connected robots are promising candidates for performing tasks in confined spaces such as search and rescue in large-scale disasters. Such robots are typically limbless, and we hypothesize that the addition of limbs could improve mobility. However, a challenge in designing and controlling such devices lies in the coordination of high-dimensional redundant modules in a way that improves mobility. Here we develop a general framework to discover templates to control serially connected multi-legged robots. Specifically, we combine two approaches to build a general shape control scheme which can provide baseline patterns of self-deformation ('gaits') for effective locomotion in diverse robot morphologies. First, we take inspiration from a dimensionality reduction and a biological gait classification scheme to generate cyclic patterns of body deformation and foot lifting/lowering, which facilitate the generation of arbitrary substrate contact patterns. Second, we extend geometric mechanics, which was originally introduced to study swimming at low Reynolds numbers, to frictional environments, allowing the identification of optimal body-leg coordination in this common terradynamic regime. Our scheme allows the development of effective gaits on flat terrain with diverse numbers of limbs (4, 6, 16, and even 0 limbs) and backbone actuation. By properly coordinating the body undulation and leg placement, our framework combines the advantages of both limbless robots (modularity and narrow profile) and legged robots (mobility). Our framework can provide general control schemes for the rapid deployment of general multi-legged robots, paving the way toward machines that can traverse complex environments. In addition, we show that our framework can also offer insights into body-leg coordination in living systems, such as salamanders and centipedes, from a biomechanical perspective.


Assuntos
Robótica , Animais , Extremidades , Marcha , Locomoção , Urodelos
5.
J Biomech ; 116: 110202, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33460866

RESUMO

Up to 84% of manual wheelchair users (MWCU) with spinal cord injury experience shoulder pain, which is correlated with shoulder adductor weakness in this population. Modeling studies have shown weak shoulder adductors lead to compensations from the deltoid and rotator cuff muscles during propulsion, which may lead to altered propulsion mechanics. However, the role recovery phase hand pattern has in pain development is unclear, as each hand pattern is associated with unique mechanics and different levels of muscle demand. Previous research found no correlation between hand pattern and shoulder pain at self-selected speeds. However, fast propulsion may exacerbate poor mechanics caused by shoulder muscle weakness, which may reveal those at risk for pain development. The present study evaluated whether the hand pattern used during fast wheelchair propulsion is correlated with shoulder pain. We also assessed whether shoulder adductor strength was correlated with hand pattern. Fast propulsion data from two subsets of MWCU were analyzed at three time points (baseline, 18 months, 36 months). All participants were pain-free at baseline. Subset 1 compared individuals who remained pain-free to those who developed shoulder pain. Subset 2 compared individuals with chronic pain at follow-up to those whose pain resolved over time. The hand pattern used was not different between groups in either subset. However, more over-rim patterns were correlated with lower adductor strength in Subset 1. These results suggest that although the hand pattern used during fast propulsion is not correlated with shoulder pain, more over-rim hand patterns may indicate weaker shoulder adductors.


Assuntos
Traumatismos da Medula Espinal , Cadeiras de Rodas , Fenômenos Biomecânicos , Mãos , Humanos , Ombro , Dor de Ombro/etiologia
6.
J Spinal Cord Med ; 43(5): 594-606, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30768378

RESUMO

Objective: Shoulder pain after spinal cord injury (SCI) is attributed to increased mobility demands on the arms and negatively impacts independence and quality of life. Repetitive superior and posterior shoulder joint forces produced during traditional wheelchair (WC) locomotion can result in subacromial impingement if unopposed, as with muscular fatigue or weakness. ROWHEELS® (RW), geared rear wheels that produce forward WC movement with backward rim pulling, could alter these forces. Design: Cross sectional. Setting: Research laboratory at a rehabilitation hospital. Participants: Ten manual WC users with paraplegia. Outcome measures: Propulsion characteristics and right upper extremity/trunk kinematics and shoulder muscle activity were collected during ergometer propulsion: (1) self-selected free speed reverse propulsion with RW, (2) matched-speed reverse (rSW), and (3) forward propulsion (fSW) with instrumented Smartwheels (SW). Inverse dynamics using right-side SW rim kinetics and kinematics compared shoulder kinetics during rSW and fSW. Results: Free propulsion velocity, cycle distance and cadence were similar during RW, rSW and fSW. Overall shoulder motion was similar except that peak shoulder extension was significantly reduced in both RW and rSW versus fSW. Anteriorly and inferiorly directed SW rim forces were decreased during rSW versus fSW propulsion, but posteriorly and superiorly directed rim forces were significantly greater. Superior and posterior shoulder joint forces and flexor, adductor, and external rotation moments were significantly less during rSW, without a significant difference in net shoulder forces and moments. Traditional propulsive-phase muscle activity was significantly reduced and recovery-phase muscle activity was increased during reverse propulsion. Conclusion: These results suggest that reverse propulsion may redirect shoulder demands and prevent subacromial impingement, thereby preventing injury and preserving independent mobility for individuals with paraplegia.


Assuntos
Articulação do Ombro , Traumatismos da Medula Espinal , Cadeiras de Rodas , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Cinética , Paraplegia/etiologia , Qualidade de Vida , Ombro , Traumatismos da Medula Espinal/complicações
7.
J Biomech ; 41(7): 1494-502, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18395213

RESUMO

Previous studies have sought to improve cycling performance by altering various aspects of the pedaling motion using novel crank-pedal mechanisms and non-circular chainrings. However, most designs have been based on empirical data and very few have provided significant improvements in cycling performance. The purpose of this study was to use a theoretical framework that included a detailed musculoskeletal model driven by individual muscle actuators, forward dynamic simulations and design optimization to determine if cycling performance (i.e., maximal power output) could be improved by optimizing the chainring shape to maximize average crank power during isokinetic pedaling conditions. The optimization identified a consistent non-circular chainring shape at pedaling rates of 60, 90 and 120 rpm with an average eccentricity of 1.29 that increased crank power by an average of 2.9% compared to a conventional circular chainring. The increase in average crank power was the result of the optimal chainrings slowing down the crank velocity during the downstroke (power phase) to allow muscles to generate power longer and produce more external work. The data also showed that chainrings with higher eccentricity increased negative muscle work following the power phase due to muscle activation-deactivation dynamics. Thus, the chainring shape that maximized average crank power balanced these competing demands by providing enough eccentricity to increase the external work generated by muscles during the power phase while minimizing negative work during the subsequent recovery phase.


Assuntos
Ciclismo/fisiologia , Extremidade Inferior/fisiologia , Modelos Biológicos , Movimento/fisiologia , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Humanos , Cinética
8.
J R Soc Interface ; 15(144)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29997260

RESUMO

Many cursorial and large hopping species are extremely efficient locomotors with various morphological adaptations believed to reduce mechanical demand and improve movement efficiency, including elongated distal limb segments. However, despite having elongated limbs, small hoppers such as desert kangaroo rats (Dipodomys deserti) are less efficient locomotors than their larger counterparts, which may be in part due to avoiding predators through explosive jumping movements. Despite potentially conflicting mechanical demands between the two movements, kangaroo rats are both excellent jumpers and attain high hopping speeds, likely due to a specialized hindlimb musculoskeletal morphology. This study combined experimental dissection data with a static analysis of muscle moment generating capacities using a newly developed musculoskeletal model to characterize kangaroo rat hindlimb musculoskeletal architecture and investigate how morphology has evolved to meet hopping and jumping mechanical demands. Hindlimb morphology appears biased towards generating constant moment arms over large joint ranges of motion in this species, which may balance competing requirements by reducing the need for posture and movement specific excitation patterns. The ankle extensors are a major exception to the strong positive relationship exhibited by most muscles between muscle architecture parameters (e.g. Lfibre) and joint moment arms. These muscles appear suited to meeting the high moments required for jumping: the biarticular nature of the ankle extensors is leveraged to reduce MTU strain and create a four-bar linkage that facilitates proximal force transfer. The kangaroo rat hindlimb provides an interesting case study for understanding how morphology balances the sometimes competing demands of hopping and jumping.


Assuntos
Adaptação Fisiológica , Dipodomys , Membro Posterior , Locomoção/fisiologia , Músculo Esquelético , Tendões , Animais , Articulação do Tornozelo , Dipodomys/anatomia & histologia , Dipodomys/fisiologia , Membro Posterior/anatomia & histologia , Membro Posterior/fisiologia , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Tendões/anatomia & histologia , Tendões/fisiologia
9.
Artigo em Inglês | MEDLINE | ID: mdl-30406089

RESUMO

Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring "flight adaptations," recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs.

10.
Artigo em Inglês | MEDLINE | ID: mdl-30505834

RESUMO

Standing up from a prone position is a critical daily activity for animals: failing to do so effectively may cause an injurious fall or increase predation susceptibility. This sit-to-stand behaviour (StS) is biomechanically interesting because it necessitates transitioning through near-maximal joint motion ranges from a crouched (i.e., poor mechanical advantage) to a more upright posture. Such large joint excursions should require large length changes of muscle-tendon units. Here we integrate experimental and musculoskeletal simulation methods to quantify the joint motions, limb forces, and muscle fibre forces, activations and length changes during StS in an extreme athlete-the greyhound-which has large hindlimb muscles bearing short-fibred distal muscles and long tendons. Study results indicate that hindlimb anti-gravity muscle fibres operate near their ~50% limits of length change during StS; mostly by starting at highly lengthened positions. StS also requires high muscle activations (>50%), in part due to non-sagittal motions. Finally, StS movements require passive non-muscular support in the distal hindlimb where short-fibred muscles are incapable of sustaining StS themselves. Non-locomotor behaviours like StS likely impose important trade-offs between muscle fibre force capacity and length changes, as well as active and passive mechanisms of support, that have been neglected in locomotor biomechanics studies.

11.
J R Soc Interface ; 13(118)2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146688

RESUMO

Owing to their cursorial background, ostriches (Struthio camelus) walk and run with high metabolic economy, can reach very fast running speeds and quickly execute cutting manoeuvres. These capabilities are believed to be a result of their ability to coordinate muscles to take advantage of specialized passive limb structures. This study aimed to infer the functional roles of ostrich pelvic limb muscles during gait. Existing gait data were combined with a newly developed musculoskeletal model to generate simulations of ostrich walking and running that predict muscle excitations, force and mechanical work. Consistent with previous avian electromyography studies, predicted excitation patterns showed that individual muscles tended to be excited primarily during only stance or swing. Work and force estimates show that ostrich gaits are partially hip-driven with the bi-articular hip-knee muscles driving stance mechanics. Conversely, the knee extensors acted as brakes, absorbing energy. The digital extensors generated large amounts of both negative and positive mechanical work, with increased magnitudes during running, providing further evidence that ostriches make extensive use of tendinous elastic energy storage to improve economy. The simulations also highlight the need to carefully consider non-muscular soft tissues that may play a role in ostrich gait.


Assuntos
Simulação por Computador , Membro Posterior/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Corrida/fisiologia , Struthioniformes/fisiologia , Caminhada/fisiologia , Animais , Membro Posterior/anatomia & histologia , Músculo Esquelético/anatomia & histologia , Pelve/anatomia & histologia , Pelve/fisiologia , Corrida/psicologia , Struthioniformes/anatomia & histologia
12.
PeerJ ; 4: e2164, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478694

RESUMO

Horse racing is a multi-billion-dollar industry that has raised welfare concerns due to injured and euthanized animals. Whilst the cause of musculoskeletal injuries that lead to horse morbidity and mortality is multifactorial, pre-existing pathologies, increased speeds and substrate of the racecourse are likely contributors to foot disease. Horse hooves have the ability to naturally deform during locomotion and dissipate locomotor stresses, yet farriery approaches are utilised to increase performance and protect hooves from wear. Previous studies have assessed the effect of different shoe designs on locomotor performance; however, no biomechanical study has hitherto measured the effect of horseshoes on the stresses of the foot skeleton in vivo. This preliminary study introduces a novel methodology combining three-dimensional data from biplanar radiography with inverse dynamics methods and finite element analysis (FEA) to evaluate the effect of a stainless steel shoe on the function of a Thoroughbred horse's forefoot during walking. Our preliminary results suggest that the stainless steel shoe shifts craniocaudal, mediolateral and vertical GRFs at mid-stance. We document a similar pattern of flexion-extension in the PIP (pastern) and DIP (coffin) joints between the unshod and shod conditions, with slight variation in rotation angles throughout the stance phase. For both conditions, the PIP and DIP joints begin in a flexed posture and extend over the entire stance phase. At mid-stance, small differences in joint angle are observed in the PIP joint, with the shod condition being more extended than the unshod horse, whereas the DIP joint is extended more in the unshod than the shod condition. We also document that the DIP joint extends more than the PIP after mid-stance and until the end of the stance in both conditions. Our FEA analysis, conducted solely on the bones, shows increased von Mises and Maximum principal stresses on the forefoot phalanges in the shod condition at mid-stance, consistent with the tentative conclusion that a steel shoe might increase mechanical loading. However, because of our limited sample size none of these apparent differences have been tested for statistical significance. Our preliminary study illustrates how the shoe may influence the dynamics and mechanics of a Thoroughbred horse's forefoot during slow walking, but more research is needed to quantify the effect of the shoe on the equine forefoot during the whole stance phase, at faster speeds/gaits and with more individuals as well as with a similar focus on the hind feet. We anticipate that our preliminary analysis using advanced methodological approaches will pave the way for new directions in research on the form/function relationship of the equine foot, with the ultimate goal to minimise foot injuries and improve animal health and welfare.

13.
PeerJ ; 3: e1001, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082859

RESUMO

We developed a three-dimensional, biomechanical computer model of the 36 major pelvic limb muscle groups in an ostrich (Struthio camelus) to investigate muscle function in this, the largest of extant birds and model organism for many studies of locomotor mechanics, body size, anatomy and evolution. Combined with experimental data, we use this model to test two main hypotheses. We first query whether ostriches use limb orientations (joint angles) that optimize the moment-generating capacities of their muscles during walking or running. Next, we test whether ostriches use limb orientations at mid-stance that keep their extensor muscles near maximal, and flexor muscles near minimal, moment arms. Our two hypotheses relate to the control priorities that a large bipedal animal might evolve under biomechanical constraints to achieve more effective static weight support. We find that ostriches do not use limb orientations to optimize the moment-generating capacities or moment arms of their muscles. We infer that dynamic properties of muscles or tendons might be better candidates for locomotor optimization. Regardless, general principles explaining why species choose particular joint orientations during locomotion are lacking, raising the question of whether such general principles exist or if clades evolve different patterns (e.g., weighting of muscle force-length or force-velocity properties in selecting postures). This leaves theoretical studies of muscle moment arms estimated for extinct animals at an impasse until studies of extant taxa answer these questions. Finally, we compare our model's results against those of two prior studies of ostrich limb muscle moment arms, finding general agreement for many muscles. Some flexor and extensor muscles exhibit self-stabilization patterns (posture-dependent switches between flexor/extensor action) that ostriches may use to coordinate their locomotion. However, some conspicuous areas of disagreement in our results illustrate some cautionary principles. Importantly, tendon-travel empirical measurements of muscle moment arms must be carefully designed to preserve 3D muscle geometry lest their accuracy suffer relative to that of anatomically realistic models. The dearth of accurate experimental measurements of 3D moment arms of muscles in birds leaves uncertainty regarding the relative accuracy of different modelling or experimental datasets such as in ostriches. Our model, however, provides a comprehensive set of 3D estimates of muscle actions in ostriches for the first time, emphasizing that avian limb mechanics are highly three-dimensional and complex, and how no muscles act purely in the sagittal plane. A comparative synthesis of experiments and models such as ours could provide powerful synthesis into how anatomy, mechanics and control interact during locomotion and how these interactions evolve. Such a framework could remove obstacles impeding the analysis of muscle function in extinct taxa.

14.
J Biomech ; 47(14): 3459-65, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25282075

RESUMO

The primary purpose of this study was to compare static and dynamic optimization muscle force and work predictions during the push phase of wheelchair propulsion. A secondary purpose was to compare the differences in predicted shoulder and elbow kinetics and kinematics and handrim forces. The forward dynamics simulation minimized differences between simulated and experimental data (obtained from 10 manual wheelchair users) and muscle co-contraction. For direct comparison between models, the shoulder and elbow muscle moment arms and net joint moments from the dynamic optimization were used as inputs into the static optimization routine. RMS errors between model predictions were calculated to quantify model agreement. There was a wide range of individual muscle force agreement that spanned from poor (26.4% Fmax error in the middle deltoid) to good (6.4% Fmax error in the anterior deltoid) in the prime movers of the shoulder. The predicted muscle forces from the static optimization were sufficient to create the appropriate motion and joint moments at the shoulder for the push phase of wheelchair propulsion, but showed deviations in the elbow moment, pronation-supination motion and hand rim forces. These results suggest the static approach does not produce results similar enough to be a replacement for forward dynamics simulations, and care should be taken in choosing the appropriate method for a specific task and set of constraints. Dynamic optimization modeling approaches may be required for motions that are greatly influenced by muscle activation dynamics or that require significant co-contraction.


Assuntos
Modelos Biológicos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos/fisiologia , Articulação do Cotovelo/fisiologia , Feminino , Mãos/fisiologia , Humanos , Masculino , Amplitude de Movimento Articular/fisiologia , Articulação do Ombro/fisiologia
15.
PeerJ ; 2: e432, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071981

RESUMO

Genetic selection for improved meat yields, digestive efficiency and growth rates have transformed the biology of broiler chickens. Modern birds undergo a 50-fold multiplication in body mass in just six weeks, from hatching to slaughter weight. However, this selection for rapid growth and improvements in broiler productivity is also widely thought to be associated with increased welfare problems as many birds suffer from leg, circulatory and respiratory diseases. To understand growth-related changes in musculoskeletal and organ morphology and respiratory skeletal development over the standard six-week rearing period, we present data from post-hatch cadaveric commercial broiler chickens aged 0, 2, 4 and 6 weeks. The heart, lungs and intestines decreased in size for hatch to slaughter weight when considered as a proportion of body mass. Proportional liver size increased in the two weeks after hatch but decreased between 2 and 6 weeks. Breast muscle mass on the other hand displayed strong positive allometry, increasing in mass faster than the increase in body mass. Contrastingly, less rapid isometric growth was found in the external oblique muscle, a major respiratory muscle that moves the sternum dorsally during expiration. Considered together with the relatively slow ossification of elements of the respiratory skeleton, it seems that rapid growth of the breast muscles might compromise the efficacy of the respiratory apparatus. Furthermore, the relative reduction in size of the major organs indicates that selective breeding in meat-producing birds has unintended consequences that may bias these birds toward compromised welfare and could limit further improvements in meat-production and feed efficiency.

16.
PeerJ ; 2: e473, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071996

RESUMO

In broiler chickens, genetic success for desired production traits is often shadowed by welfare concerns related to musculoskeletal health. Whilst these concerns are clear, a viable solution is still elusive. Part of the solution lies in knowing how anatomical changes in afflicted body systems that occur across ontogeny influence standing and moving. Here, to demonstrate these changes we quantify the segment inertial properties of the whole body, trunk (legs removed) and the right pelvic limb segments of five broilers at three different age groups across development. We also consider how muscle architecture (mass, fascicle length and other properties related to mechanics) changes for selected muscles of the pelvic limb. All broilers used had no observed lameness, but we document the limb pathologies identified post mortem, since these two factors do not always correlate, as shown here. The most common leg disorders, including bacterial chondronecrosis with osteomyelitis and rotational and angular deformities of the lower limb, were observed in chickens at all developmental stages. Whole limb morphology is not uniform relative to body size, with broilers obtaining large thighs and feet between four and six weeks of age. This implies that the energetic cost of swinging the limbs is markedly increased across this growth period, perhaps contributing to reduced activity levels. Hindlimb bone length does not change during this period, which may be advantageous for increased stability despite the increased energetic costs. Increased pectoral muscle growth appears to move the centre of mass cranio-dorsally in the last two weeks of growth. This has direct consequences for locomotion (potentially greater limb muscle stresses during standing and moving). Our study is the first to measure these changes in the musculoskeletal system across growth in chickens, and reveals how artificially selected changes of the morphology of the pectoral apparatus may cause deficits in locomotion.

17.
J Biomech ; 45(9): 1739-44, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22520587

RESUMO

Generating muscle-driven forward dynamics simulations of human movement using detailed musculoskeletal models can be computationally expensive. This is due in part to the time required to calculate musculotendon geometry (e.g., musculotendon lengths and moment arms), which is necessary to determine and apply individual musculotendon forces during the simulation. Modeling upper-extremity musculotendon geometry can be especially challenging due to the large number of multi-articular muscles and complex muscle paths. To accurately represent this geometry, wrapping surface algorithms and/or other computationally expensive techniques (e.g., phantom segments) are used. This paper provides a set of computationally efficient polynomial regression equations that estimate musculotendon length and moment arms for thirty-two (32) upper-extremity musculotendon actuators representing the major muscles crossing the shoulder, elbow and wrist joints. Equations were developed using a least squares fitting technique based on geometry values obtained from a validated public-domain upper-extremity musculoskeletal model that used wrapping surface elements (Holzbaur et al., 2005). In general, the regression equations fit well the original model values, with an average root mean square difference for all musculotendon actuators over the represented joint space of 0.39 mm (1.1% of peak value). In addition, the equations reduced the computational time required to simulate a representative upper-extremity movement (i.e., wheelchair propulsion) by more than two orders of magnitude (315 versus 2.3 s). Thus, these equations can assist in generating computationally efficient forward dynamics simulations of a wide range of upper-extremity movements.


Assuntos
Modelos Biológicos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Tendões/fisiologia , Extremidade Superior/fisiologia , Humanos , Análise de Regressão
18.
Clin Biomech (Bristol, Avon) ; 27(9): 879-86, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22835860

RESUMO

BACKGROUND: The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. METHODS: Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. RESULTS: Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. INTERPRETATION: Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand.


Assuntos
Modelos Biológicos , Contração Muscular , Músculo Esquelético/fisiopatologia , Esforço Físico , Desempenho Psicomotor , Extremidade Superior/fisiopatologia , Cadeiras de Rodas , Adulto , Simulação por Computador , Feminino , Humanos , Masculino , Sistemas Homem-Máquina , Pessoa de Meia-Idade
19.
J Biomech ; 44(7): 1246-52, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21397232

RESUMO

Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes.


Assuntos
Braço/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Extremidade Superior/fisiologia , Cadeiras de Rodas , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento (Física) , Movimento , Músculos
20.
J Appl Biomech ; 26(4): 493-500, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21245509

RESUMO

Manipulating seat configuration (i.e., seat tube angle, seat height and pelvic orientation) alters the bicycle-rider geometry, which influences lower extremity muscle kinematics and ultimately muscle force and power generation during pedaling. Previous studies have sought to identify the optimal configuration, but isolating the effects of specific variables on rider performance from the confounding effect of rider adaptation makes such studies challenging. Of particular interest is the influence of seat tube angle on rider performance, as seat tube angle varies across riding disciplines (e.g., road racers vs. triathletes). The goals of the current study were to use muscle-actuated forward dynamics simulations of pedaling to 1) identify the overall optimal seat configuration that produces maximum crank power and 2) systematically vary seat tube angle to assess how it influences maximum crank power. The simulations showed that a seat height of 0.76 m (or 102% greater than trochanter height), seat tube angle of 85.1 deg, and pelvic orientation of 20.5 deg placed the major power-producing muscles on more favorable regions of the intrinsic force-length-velocity relationships to generate a maximum average crank power of 981 W. However, seat tube angle had little influence on crank power, with maximal values varying at most by 1% across a wide range of seat tube angles (65 to 110 deg). The similar power values across the wide range of seat tube angles were the result of nearly identical joint kinematics, which occurred using a similar optimal seat height and pelvic orientation while systematically shifting the pedal angle with increasing seat tube angles.


Assuntos
Ciclismo/fisiologia , Fenômenos Biomecânicos , Desenho de Equipamento , Humanos , Articulações/fisiologia , Modelos Anatômicos , Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa