Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(3): 100976, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36921598

RESUMO

Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.


Assuntos
Cardiomiopatia Restritiva , Humanos , Cardiomiopatia Restritiva/genética , Engenharia Tecidual , Miócitos Cardíacos , Miocárdio , Descoberta de Drogas
2.
Cell Rep ; 40(7): 111203, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977512

RESUMO

In the heart, protein kinase A (PKA) is critical for activating calcium handling and sarcomeric proteins in response to beta-adrenergic stimulation leading to increased myocardial contractility and performance. The catalytic activity of PKA is tightly regulated by regulatory subunits that inhibit the catalytic subunit until released by cAMP binding. Phosphorylation of type II regulatory subunits promotes PKA activation; however, the role of phosphorylation in type I regulatory subunits remain uncertain. Here, we utilize human induced pluripotent stem cell cardiomyocytes (iPSC-CMs) to identify STK25 as a kinase of the type Iα regulatory subunit PRKAR1A. Phosphorylation of PRKAR1A leads to inhibition of PKA kinase activity and increased binding to the catalytic subunit in the presence of cAMP. Stk25 knockout in mice diminishes Prkar1a phosphorylation, increases Pka activity, and augments contractile response to beta-adrenergic stimulation. Together, these data support STK25 as a negative regulator of PKA signaling through phosphorylation of PRKAR1A.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico , Células-Tronco Pluripotentes Induzidas , Adrenérgicos/metabolismo , Animais , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 101(46): 16374-8, 2004 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-15528278

RESUMO

A-kinase anchoring proteins (AKAPs) are thought to be passive members of protein complexes that coordinate the association of cAMP-dependent protein kinase A (PKA) with cellular substrates to facilitate targeted PKA protein phosphorylation. I(Ks), the slow heart potassium current, is carried by the I(Ks) potassium channel, a substrate for PKA phosphorylation in response to sympathetic nerve stimulation, is a macromolecular complex that includes the KCNQ1 alpha subunit, the KCNE1 regulatory subunit, and the AKAP Yotiao. Disruption of this regulation by mutation in the long QT syndrome is associated with elevated risk of sudden death. Here, we have studied the effects of the AKAP Yotiao on the function of the I(Ks) channel that had been mutated to simulate channel phosphorylation, and we report direct AKAP-mediated alteration of channel function distinct from its role in the coordination of channel phosphorylation by PKA. These data reveal previously undescribed actions of Yotiao that occur subsequent to channel phosphorylation and provide evidence that this adaptor protein also may serve as an effector in regulating this important ion channel.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miocárdio/metabolismo , Canais de Potássio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sequência de Bases , Células CHO , Cricetinae , AMP Cíclico/farmacologia , Proteínas do Citoesqueleto/genética , DNA/genética , Canais de Potássio KCNQ , Canal de Potássio KCNQ1 , Mutagênese Sítio-Dirigida , Fosforilação , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa