RESUMO
The inbred strains C57BL/6J and DBA/2J (DBA) display striking differences in a number of behavioral tasks depending on hippocampal function, such as contextual memory. Historically, this has been explained through differences in postsynaptic protein expression underlying synaptic transmission and plasticity. We measured the synaptic hippocampal protein content (iTRAQ (Isobaric Tags for Relative and Absolute Quantitation) and mass spectrometry), CA1 synapse ultrastructural morphology, and synaptic functioning in adult C57BL/6J and DBA mice. DBA mice showed a prominent decrease in the Ras-GAP calcium-sensing protein RASAL1. Furthermore, expression of several presynaptic markers involved in exocytosis, such as syntaxin (Stx1b), Ras-related proteins (Rab3a/c), and rabphilin (Rph3a), was reduced. Ultrastructural analysis of CA1 hippocampal synapses showed a significantly lower number of synaptic vesicles and presynaptic cluster size in DBA mice, without changes in postsynaptic density or active zone. In line with this compromised presynaptic morphological and molecular phenotype in DBA mice, we found significantly lower paired-pulse facilitation and enhanced short term depression of glutamatergic synapses, indicating a difference in transmitter release and/or refilling mechanisms. Taken together, our data suggest that in addition to strain-specific postsynaptic differences, the change in dynamic properties of presynaptic transmitter release may underlie compromised synaptic processing related to cognitive functioning in DBA mice.
Assuntos
Cognição/fisiologia , Hipocampo , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica , Proteoma/metabolismo , Animais , Hipocampo/fisiologia , Hipocampo/ultraestrutura , Camundongos , Camundongos Endogâmicos DBA , Proteoma/fisiologia , Proteoma/ultraestrutura , Proteômica , Especificidade da EspécieRESUMO
A change in efficacy of hippocampal synapses is critical for memory formation. So far, the molecular analysis of synapses during learning has focused on small groups of proteins, whereas the dynamic global changes at these synapses have remained unknown. Here, we analyzed the temporal changes of the mouse hippocampal synaptic membrane proteome 1 and 4 h after contextual fear learning, comparing two groups; (1) a fear memory forming "delayed-shock" group and (2) a fear memory-deficient "immediate-shock" group. No changes in protein expression were observed 1 h after conditioning between the two experimental groups. However, 423 proteins were significantly regulated 4 h later of which 164 proteins showed a temporal regulation after a delayed shock and 273 proteins after the stress of an immediate shock. From the proteins that were differentially regulated between the delayed- and the immediate-shock groups at 4 h, 48 proteins, most prominently representing endocytosis, (amphiphysin, dynamin, and synaptojanin1), glutamate signaling (glutamate [NMDA] receptor subunit epsilon-1, disks large homolog 3), and neurotransmitter metabolism (excitatory amino acid transporter 1, excitatory amino acid transporter 2, sodium- and chloride-dependent GABA transporter 3) were regulated in both protocols, but in opposite directions, pointing toward an interaction of learning and stress. Taken together, this data set yields novel insight into diverse and dynamic changes that take place at hippocampal synapses over the time course of contextual fear-memory learning.
Assuntos
Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Medo/fisiologia , Hipocampo/metabolismo , Proteoma/metabolismo , Estresse Psicológico/metabolismo , Membranas Sinápticas/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de TempoRESUMO
Stress modulates the activity of various memory systems and can thereby guide behavioral interaction with the environment in an adaptive or maladaptive manner. At the cellular level, a large body of evidence indicates that (nor)adrenaline and glucocorticoid release induced by acute stress exposure affects synapse function and synaptic plasticity, which are critical substrates for learning and memory. Recent evidence suggests that memories are supported in the brain by sparsely distributed neurons within networks, termed engram cell ensembles. While the physiological and molecular effects of stress on the synapse are increasingly well characterized, how these synaptic modifications shape the multiscale dynamics of engram cell ensembles is still poorly understood. In this review, we discuss and integrate recent information on how acute stress affects synapse function and how this may alter engram cell ensembles and their synaptic connectivity to shape memory strength and memory precision. We provide a mechanistic framework of a synaptic engram under stress and put forward outstanding questions that address knowledge gaps in our understanding of the mechanisms that underlie stress-induced memory modulation.
Assuntos
Aprendizagem , Memória , Memória/fisiologia , Neurônios/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologiaRESUMO
Post-reactivation amnesia of contextual fear memories by blockade of noradrenergic signaling has been shown to have limited replicability in rodents. This is usually attributed to several boundary conditions that gate the destabilization of memory during its retrieval. How these boundary conditions can be overcome, and what neural mechanisms underlie post-reactivation changes in contextual fear memories remain largely unknown. Here, we report a series of experiments in a contextual fear-conditioning paradigm in mice, that were aimed at solving these issues. We first attempted to obtain a training paradigm that would consistently result in contextual fear memory that could be destabilized upon reactivation, enabling post-retrieval amnesia by the administration of propranolol. Unexpectedly, our attempts were unsuccessful to this end. Specifically, over a series of experiments in which we varied different parameters of the fear acquisition procedure, at best small and inconsistent effects were observed. Additionally, we found that propranolol did not alter retrieval-induced neural activity, as measured by the number of c-Fos+ cells in the hippocampal dentate gyrus. To determine whether propranolol was perhaps ineffective in interfering with reactivated contextual fear memories, we also included anisomycin (i.e., a potent and well-known amnesic drug) in several experiments, and measures of synaptic glutamate receptor subunit GluA2 (i.e., a marker of memory destabilization). No post-retrieval amnesia by anisomycin and no altered GluA2 expression by reactivation was observed, suggesting that the memories did not undergo destabilization. The null findings are surprising, given that the training paradigms we implemented were previously shown to result in memories that could be modified upon reactivation. Together, our observations illustrate the elusive nature of reactivation-dependent changes in non-human fear memory.
RESUMO
The ability to store and retrieve learned information over prolonged periods of time is an essential and intriguing property of the brain. Insight into the neurobiological mechanisms that underlie memory consolidation is of utmost importance for our understanding of memory persistence and how this is affected in memory disorders. Recent evidence indicates that a given memory is encoded by sparsely distributed neurons that become highly activated during learning, so-called engram cells. Research by us and others confirms the persistent nature of cortical engram cells by showing that these neurons are required for memory expression up to at least 1 month after they were activated during learning. Strengthened synaptic connectivity between engram cells is thought to ensure reactivation of the engram cell network during retrieval. However, given the continuous integration of new information into existing neuronal circuits and the relatively rapid turnover rate of synaptic proteins, it is unclear whether a lasting learning-induced increase in synaptic connectivity is mediated by stable synapses or by continuous dynamic turnover of synapses of the engram cell network. Here, we first discuss evidence for the persistence of engram cells and memory-relevant adaptations in synaptic plasticity, and then propose models of synaptic adaptations and molecular mechanisms that may support memory persistence through the maintenance of enhanced synaptic connectivity within an engram cell network.
RESUMO
Extensive work in computational modeling has highlighted the advantages for employing sparse yet distributed data representation and storage Kanerva (1998), properties that extend to neuronal networks encoding mnemonic information (memory traces or engrams). While neurons that participate in an engram are distributed across multiple brain regions, within each region, the cellular sparsity of the mnemonic representation appears to be quite fixed. Although technological advances have enabled significant progress in identifying and manipulating engrams, relatively little is known about the region-dependent microcircuit rules governing the cellular sparsity of an engram. Here we review recent studies examining the mechanisms that help shape engram architecture and examine how these processes may regulate memory function. We speculate that countervailing forces in local microcircuits contribute to the generation and maintenance of engrams and discuss emerging questions regarding how engrams are formed, stored and used.
Assuntos
Encéfalo/citologia , Aprendizagem/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Simulação por Computador , HumanosRESUMO
Encoding and retrieval of contextual memories is initially mediated by sparsely activated neurons, so-called engram cells, in the hippocampus. Subsequent memory persistence is thought to depend on network-wide changes involving progressive contribution of cortical regions, a process referred to as systems consolidation. Using a viral-based TRAP (targeted recombination in activated populations) approach, we studied whether consolidation of contextual fear memory by neurons in the medial prefrontal cortex (mPFC) is modulated by memory strength and CREB function. We demonstrate that activity of a small subset of mPFC neurons is sufficient and necessary for remote memory expression, but their involvement depends on the strength of conditioning. Furthermore, selective disruption of CREB function in mPFC engram cells after mild conditioning impairs remote memory expression. Together, our data demonstrate that memory consolidation by mPFC engram cells requires CREB-mediated transcription, with the functionality of this network hub being gated by memory strength.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medo/fisiologia , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Comportamento Animal/fisiologia , Condicionamento Psicológico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Modelos Animais , Neurônios/metabolismo , Técnicas de Patch-Clamp , Córtex Pré-Frontal/citologia , Técnicas EstereotáxicasRESUMO
Sparse populations of neurons in the dentate gyrus (DG) of the hippocampus are causally implicated in the encoding of contextual fear memories. However, engram-specific molecular mechanisms underlying memory consolidation remain largely unknown. Here we perform unbiased RNA sequencing of DG engram neurons 24 h after contextual fear conditioning to identify transcriptome changes specific to memory consolidation. DG engram neurons exhibit a highly distinct pattern of gene expression, in which CREB-dependent transcription features prominently (P = 6.2 × 10-13), including Atf3 (P = 2.4 × 10-41), Penk (P = 1.3 × 10-15), and Kcnq3 (P = 3.1 × 10-12). Moreover, we validate the functional relevance of the RNAseq findings by establishing the causal requirement of intact CREB function specifically within the DG engram during memory consolidation, and identify a novel group of CREB target genes involved in the encoding of long-term memory.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas do Citoesqueleto/metabolismo , Giro Denteado/fisiologia , Consolidação da Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Condicionamento Psicológico/fisiologia , Giro Denteado/citologia , Encefalinas/genética , Encefalinas/metabolismo , Medo/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/fisiologia , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Neurônios/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Análise de Sequência de RNA , Técnicas EstereotáxicasRESUMO
Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall.
Assuntos
Proteínas de Transporte/metabolismo , Hipocampo/fisiologia , Proteínas de Membrana/metabolismo , Memória , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Proteínas de Transporte/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Mapeamento de Interação de ProteínasRESUMO
Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission.
Assuntos
Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Animais , Células Cultivadas , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Hipocampo/citologia , Humanos , Proteínas de Membrana/genética , Camundongos , Neurônios/citologia , Ratos , Receptores de AMPA/genética , Sinapses , Técnicas do Sistema de Duplo-HíbridoRESUMO
Upon retrieval, fear memories are rendered labile and prone to modification, necessitating a restabilization process of reconsolidation to persist further. This process is also crucial for modulating both strength and content of an existing memory and forms a promising therapeutic target for fear-related disorders. However, the molecular and cellular mechanism of adaptive reconsolidation still remains obscure. Here we show that retrieval of fear memory induces a biphasic temporal change in GluA2-containing AMPA-type glutamate receptor (AMPAR) membrane expression and synaptic strength in the mouse dorsal hippocampus. Blockade of retrieval-induced, regulated, GluA2-dependent endocytosis enhanced subsequent expression of fear. In addition, this blockade prevented the loss of fear response after reconsolidation-update of fear memory content in the long-term. Thus, endocytosis of GluA2-containing AMPARs allows plastic changes at the synaptic level that exerts an inhibitory constraint on memory strengthening and underlies the loss of fear response by reinterpretation of memory content during adaptive reconsolidation.