Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 291(14): 3104-3127, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38487972

RESUMO

Intestinal edema is a common manifestation of numerous gastrointestinal diseases and is characterized by the accumulation of fluid in the interstitial space of the intestinal wall. Technical advances in laser capture microdissection and low-biomass proteomics now allow us to specifically characterize the intestinal edema proteome. Using advanced proteomics, we identify peptides derived from antimicrobial factors with high signal intensity, but also highlight major contributions from the blood clotting system, extracellular matrix (ECM) and protease-protease inhibitor networks. The ECM is a complex fibrillar network of macromolecules that provides structural and mechanical support to the intestinal tissue. One abundant component of the ECM observed in Salmonella-driven intestinal edema is the glycoprotein fibronectin, recognized for its structure-function interplay regulated by mechanical forces. Using mechanosensitive staining of fibronectin fibers reveals that they are tensed in the edema, despite the high abundance of proteases able to cleave fibronectin. In contrast, fibronectin fibers increasingly relax in other cecal tissue areas as the infection progresses. Co-staining for fibrin(ogen) indicates the formation of a provisional matrix in the edema, similar to what is observed in response to skin injury, while collagen staining reveals a sparse and disrupted collagen fiber network. These observations plus the absence of low tensional fibronectin fibers and the additional finding of a high number of protease inhibitors in the edema proteome could indicate a critical role of stretched fibronectin fibers in maintaining tissue integrity in the severely inflamed cecum. Understanding these processes may also provide valuable functional diagnostic markers of intestinal disease progression in the future.


Assuntos
Edema , Fibronectinas , Animais , Fibronectinas/metabolismo , Camundongos , Edema/metabolismo , Edema/patologia , Edema/microbiologia , Matriz Extracelular/metabolismo , Proteômica/métodos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Infecções por Salmonella/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Salmonella typhimurium/patogenicidade , Salmonella typhimurium/metabolismo
2.
Nat Cell Biol ; 20(9): 1052-1063, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30061680

RESUMO

A key step in nutrient sensing is activation of the master growth regulator, mTORC1 kinase, on the lysosomal membrane. Nutrients enable mTORC1 scaffolding by a complex composed of the Rag GTPases (Rags) and Ragulator, but the underlying mechanism of mTORC1 capture is poorly understood. Combining dynamic imaging in cells and reconstituted systems, we uncover an affinity switch that controls mTORC1 lifetime and activation at the lysosome. Nutrients destabilize the Rag-Ragulator interface, causing cycling of the Rags between lysosome-bound Ragulator and the cytoplasm, and rendering mTORC1 capture contingent on simultaneous engagement of two Rag-binding interfaces. Rag GTPase domains trigger cycling by coordinately weakening binding of the C-terminal domains to Ragulator in a nucleotide-controlled manner. Cancer-specific Rag mutants override release from Ragulator and enhance mTORC1 recruitment and signalling output. Cycling in the active state sets the Rags apart from most signalling GTPases, and provides a mechanism to attenuate mTORC1 signalling.


Assuntos
Neoplasias Ósseas/enzimologia , Metabolismo Energético , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Osteossarcoma/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Ativação Enzimática , Células HEK293 , Humanos , Lisossomos/genética , Lisossomos/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa