Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 24(12): e57232, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37902009

RESUMO

The topography of biological membranes is critical for formation of protein and lipid microdomains. One prominent example in the yeast plasma membrane (PM) are BAR domain-induced PM furrows. Here we report a novel function for the Sur7 family of tetraspanner proteins in the regulation of local PM topography. Combining TIRF imaging, STED nanoscopy, freeze-fracture EM and membrane simulations we find that Sur7 tetraspanners form multimeric strands at the edges of PM furrows, where they modulate forces exerted by BAR domain proteins at the furrow base. Loss of Sur7 tetraspanners or Sur7 displacement due to altered PIP2 homeostasis leads to increased PM invagination and a distinct form of membrane tubulation. Physiological defects associated with PM tubulation are rescued by synthetic anchoring of Sur7 to furrows. Our findings suggest a key role for tetraspanner proteins in sculpting local membrane domains. The maintenance of stable PM furrows depends on a balance between negative curvature at the base which is generated by BAR domains and positive curvature at the furrows' edges which is stabilized by strands of Sur7 tetraspanners.


Assuntos
Proteínas , Membrana Celular/metabolismo , Proteínas/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34686599

RESUMO

How signaling units spontaneously arise from a noisy cellular background is not well understood. Here, we show that stochastic membrane deformations can nucleate exploratory dendritic filopodia, dynamic actin-rich structures used by neurons to sample its surroundings for compatible transcellular contacts. A theoretical analysis demonstrates that corecruitment of positive and negative curvature-sensitive proteins to deformed membranes minimizes the free energy of the system, allowing the formation of long-lived curved membrane sections from stochastic membrane fluctuations. Quantitative experiments show that once recruited, curvature-sensitive proteins form a signaling circuit composed of interlinked positive and negative actin-regulatory feedback loops. As the positive but not the negative feedback loop can sense the dendrite diameter, this self-organizing circuit determines filopodia initiation frequency along tapering dendrites. Together, our findings identify a receptor-independent signaling circuit that employs random membrane deformations to simultaneously elicit and limit formation of exploratory filopodia to distal dendritic sites of developing neurons.


Assuntos
Dendritos/metabolismo , Neurônios/metabolismo , Pseudópodes/metabolismo , Animais , Transdução de Sinais , Processos Estocásticos
3.
Mol Biol Cell ; 27(22): 3616-3626, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27535428

RESUMO

Filopodia are dynamic, actin-rich structures that transiently form on a variety of cell types. To understand the underlying control mechanisms requires precise monitoring of localization and concentration of individual regulatory and structural proteins as filopodia elongate and subsequently retract. Although several methods exist that analyze changes in filopodial shape, a software solution to reliably correlate growth dynamics with spatially resolved protein concentration along the filopodium independent of bending, lateral shift, or tilting is missing. Here we introduce a novel approach based on the convex-hull algorithm for parallel analysis of growth dynamics and relative spatiotemporal protein concentration along flexible filopodial protrusions. Detailed in silico tests using various geometries confirm that our technique accurately tracks growth dynamics and relative protein concentration along the filopodial length for a broad range of signal distributions. To validate our technique in living cells, we measure filopodial dynamics and quantify spatiotemporal localization of filopodia-associated proteins during the filopodial extension-retraction cycle in a variety of cell types in vitro and in vivo. Together these results show that the technique is suitable for simultaneous analysis of growth dynamics and spatiotemporal protein enrichment along filopodia. To allow readily application by other laboratories, we share source code and instructions for software handling.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Pseudópodes/fisiologia , Estatística como Assunto/métodos , Actinas/metabolismo , Algoritmos , Forma Celular/fisiologia , Simulação por Computador , Pseudópodes/metabolismo , Software , Análise Espaço-Temporal
4.
Sci Rep ; 5: 17973, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26647824

RESUMO

Studies of cellular surface features gain from correlative approaches, where live cell information acquired by fluorescence light microscopy is complemented by ultrastructural information from scanning electron micrographs. Current approaches to spatially align fluorescence images with scanning electron micrographs are technically challenging and often cost or time-intensive. Relying exclusively on open-source software and equipment available in a standard lab, we have developed a method for rapid, software-assisted alignment of fluorescence images with the corresponding scanning electron micrographs via a stochastic gold micro-pattern. Here, we provide detailed instructions for micro-pattern production and image processing, troubleshooting for critical intermediate steps, and examples of membrane ultra-structures aligned with the fluorescence signal of proteins enriched at such sites. Together, the presented method for correlative fluorescence - scanning electron microscopy is versatile, robust and easily integrated into existing workflows, permitting image alignment with accuracy comparable to existing approaches with negligible investment of time or capital.

5.
FEMS Microbiol Ecol ; 50(2): 75-86, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19712366

RESUMO

Rhodococcus opacus PD630 was investigated for physiological and morphological changes under water stress challenge. Gluconate- and hexadecane-grown cells were extremely resistant to these conditions, and survival accounted for up to 300 and 400 days; respectively, when they were subjected to slow air-drying. Results of this study suggest that strain PD630 has specific mechanisms to withstand water stress. Water-stressed cells were sensitive to the application of ethanol, high temperatures and oxidative stress, whereas they exhibited cross-protection solely against osmotic stress during the first hours of application. Results indicate that the resistance programme for water stress in R. opacus PD630 includes the following physiological and morphological changes, among others: (1) energetic adjustments with drastic reduction of the metabolic activity ( approximately 39% decrease during the first 24 h and about 90% after 190 days under dehydration), (2) endogenous metabolism using intracellular triacylglycerols for generating energy and precursors, (3) biosynthesis of different osmolytes such as trehalose, ectoine and hydroxyectoine, which may achieve a water balance through osmotic adjustment and may explain the overlap between water and osmotic stress, (4) adjustments of the cell-wall through the turnover of mycolic acid species, as preliminary experiments revealed no evident changes in the thickness of the cell envelope, (5) formation of short fragmenting-cells as probable resistance forms, (6) production of an extracellular slime covering the surface of colonies, which probably regulates internal and external changes in water potential, and (7) formation of compact masses of cells. This contributes to understanding the water stress resistance processes in the soil bacterium R. opacus PD630.


Assuntos
Desidratação , Viabilidade Microbiana , Rhodococcus/fisiologia , Microbiologia do Solo , Estresse Fisiológico , Alcanos/metabolismo , Diamino Aminoácidos/biossíntese , Parede Celular/metabolismo , Metabolismo Energético , Gluconatos/metabolismo , Pressão Osmótica , Polissacarídeos Bacterianos/biossíntese , Rhodococcus/citologia , Trealose/biossíntese , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa