Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Traffic ; 20(2): 152-167, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30548142

RESUMO

Morphogenesis of herpesviral virions is initiated in the nucleus but completed in the cytoplasm. Mature virions contain more than 25 tegument proteins many of which perform both nuclear and cytoplasmic functions suggesting they shuttle between these compartments. While nuclear import of herpesviral proteins was shown to be crucial for viral propagation, active nuclear export and its functional impact are still poorly understood. To systematically analyze nuclear export of tegument proteins present in virions of Herpes simplex virus type 1 (HSV1) and Epstein-Barr virus (EBV), the Nuclear EXport Trapped by RAPamycin (NEX-TRAP) was applied. Nine of the 22 investigated HSV1 tegument proteins including pUL4, pUL7, pUL11, pUL13, pUL21, pUL37d11, pUL47, pUL48 and pUS2 as well as 2 out of 6 EBV orthologs harbor nuclear export activity. A functional leucine-rich nuclear export sequence (NES) recognized by the export factor CRM1/Xpo1 was identified in six of them. The comparison between experimental and bioinformatic data indicates that experimental validation of predicted NESs is required. Mutational analysis of the pUL48/VP16 NES revealed its importance for herpesviral propagation. Together our data suggest that nuclear export is an important feature of the herpesviral life cycle required to co-ordinate nuclear and cytoplasmic processes.


Assuntos
Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 4/metabolismo , Sinais de Exportação Nuclear , Proteínas da Matriz Viral/química , Animais , Chlorocebus aethiops , Células HeLa , Herpesvirus Humano 1/fisiologia , Herpesvirus Humano 4/fisiologia , Humanos , Células Vero , Proteínas da Matriz Viral/metabolismo , Replicação Viral
2.
PLoS Pathog ; 11(6): e1004957, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26083367

RESUMO

Progeny capsids of herpesviruses leave the nucleus by budding through the nuclear envelope. Two viral proteins, the membrane protein pUL34 and the nucleo-phosphoprotein pUL31 form the nuclear egress complex that is required for capsid egress out of the nucleus. All pUL31 orthologs are composed of a diverse N-terminal domain with 1 to 3 basic patches and a conserved C-terminal domain. To decipher the functions of the N-terminal domain, we have generated several Herpes simplex virus mutants and show here that the N-terminal domain of pUL31 is essential with basic patches being critical for viral propagation. pUL31 and pUL34 entered the nucleus independently of each other via separate routes and the N-terminal domain of pUL31 was required to prevent their premature interaction in the cytoplasm. Unexpectedly, a classical bipartite nuclear localization signal embedded in this domain was not required for nuclear import of pUL31. In the nucleus, pUL31 associated with the nuclear envelope and newly formed capsids. Viral mutants lacking the N-terminal domain or with its basic patches neutralized still associated with nucleocapsids but were unable to translocate them to the nuclear envelope. Replacing the authentic basic patches with a novel artificial one resulted in HSV1(17+)Lox-UL31-hbpmp1mp2, that was viable but delayed in nuclear egress and compromised in viral production. Thus, while the C-terminal domain of pUL31 is sufficient for the interaction with nucleocapsids, the N-terminal domain was essential for capsid translocation to sites of nuclear egress and a coordinated interaction with pUL34. Our data indicate an orchestrated sequence of events with pUL31 binding to nucleocapsids and escorting them to the inner nuclear envelope. We propose a common mechanism for herpesviral nuclear egress: pUL31 is required for intranuclear translocation of nucleocapsids and subsequent interaction with pUL34 thereby coupling capsid maturation with primary envelopment.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Herpesvirus Humano 1/fisiologia , Proteínas do Nucleocapsídeo/metabolismo , Montagem de Vírus/fisiologia , Animais , Chlorocebus aethiops , Células HeLa , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Células Vero
3.
Traffic ; 13(10): 1326-34, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22708827

RESUMO

Transport of proteins between cytoplasm and nucleus is mediated by transport factors of the importin α- and ß-families and occurs along a gradient of the small GTPase Ran. To date, in vivo analysis as well as prediction of protein nuclear export remain tedious and difficult. We generated a novel bipartite assay called NEX-TRAP (Nuclear EXport Trapped by RAPamycin) for in vivo analysis of protein nuclear export. The assay is based on the rapamycin-induced dimerization of the modules FRB (FK506-rapamycin (FR)-binding domain) and FKBP (FK506-binding protein-12): a potential nuclear export cargo is fused to FRB, to EYFP for direct visualization as well as to an SV40-derived nuclear localization signal (NLS) for constitutive nuclear import. An integral membrane protein that resides at the trans Golgi network (TGN) is fused to a cytoplasmically exposed FKBP and serves as reporter. EYFP-NLS-FRB fusion proteins with export activity accumulate in the nucleus at steady state but continuously shuttle between nucleus and cytoplasm. Rapamycin-induced dimerization of FRB and FKBP at the TGN traps the shuttling protein outside of the nucleus, making nuclear export permanent. Using several example cargoes, we show that the NEX-TRAP is superior to existing assays owing to its ease of use, its sensitivity and accuracy. Analysis of large numbers of export cargoes is facilitated by recombinational cloning. The NEX-TRAP holds the promise of applicability in automated fluorescence imaging for systematic analysis of nuclear export, thereby improving in silico prediction of nuclear export sequences.


Assuntos
Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Técnicas Citológicas , Dimerização , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Sinais de Localização Nuclear , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes , Sirolimo/química , Sirolimo/farmacologia , Proteínas de Ligação a Tacrolimo/genética , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
4.
Cell Microbiol ; 15(2): 335-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23189961

RESUMO

The herpesvirus replication cycle comprises maturation processes in the nucleus and cytoplasm of the infected cells. After their nuclear assembly viral capsids translocate via primary envelopment towards the cytoplasm. This event is mediated by the nuclear envelopment complex, which is composed by two conserved viral proteins belonging to the UL34 and UL31 protein families. Here, we generated recombinant viruses, which express affinity-tagged pM50 and/or pM53, the pUL34 and pUL31 homologues of the murine cytomegalovirus. We extracted pM50- and pM53-associated protein complexes from infected cells and analysed their composition after affinity purification by mass spectrometry. We observed reported interaction partners and identified new putative protein-protein interactions for both proteins. Endophilin-A2 was observed as the most prominent cellular partner of pM50. We found that endophilin-A2 binds to pM50 directly, and this interaction seems to be conserved in the pUL34 family.


Assuntos
Aciltransferases/metabolismo , Muromegalovirus/fisiologia , Proteínas Mutantes Quiméricas/metabolismo , Proteínas Virais/metabolismo , Aciltransferases/antagonistas & inibidores , Aciltransferases/genética , Animais , Citosol/metabolismo , Citosol/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno , Espectrometria de Massas , Camundongos , Proteínas Mutantes Quiméricas/genética , Membrana Nuclear/metabolismo , Membrana Nuclear/virologia , Ligação Proteica , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Liberação de Vírus
5.
Viruses ; 13(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34452409

RESUMO

Herpes simplex virus type 1 nucleocapsids are released from the host nucleus by a budding process through the nuclear envelope called nuclear egress. Two viral proteins, the integral membrane proteins pUL34 and pUL31, form the nuclear egress complex at the inner nuclear membrane, which is critical for this process. The nuclear import of both proteins ensues separately from each other: pUL31 is actively imported through the central pore channel, while pUL34 is transported along the peripheral pore membrane. With this study, we identified a functional bipartite NLS between residues 178 and 194 of pUL34. pUL34 lacking its NLS is mislocalized to the TGN but retargeted to the ER upon insertion of the authentic NLS or a mimic NLS, independent of the insertion site. If co-expressed with pUL31, either of the pUL34-NLS variants is efficiently, although not completely, targeted to the nuclear rim where co-localization with pUL31 and membrane budding seem to occur, comparable to the wild-type. The viral mutant HSV1(17+)Lox-UL34-NLS mt is modestly attenuated but viable and associated with localization of pUL34-NLS mt to both the nuclear periphery and cytoplasm. We propose that targeting of pUL34 to the INM is facilitated by, but not dependent on, the presence of an NLS, thereby supporting NEC formation and viral replication.


Assuntos
Núcleo Celular/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Liberação de Vírus , Transporte Ativo do Núcleo Celular , Motivos de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Mutação , Células Vero , Proteínas Virais/genética , Replicação Viral
6.
Viruses ; 8(3): 83, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26999189

RESUMO

The herpes simplex virus type 1 (HSV-1) glycoprotein N (gN/UL49.5) is a type I transmembrane protein conserved throughout the herpesvirus family. gN is a resident of the endoplasmic reticulum that in the presence of gM is translocated to the trans Golgi network. gM and gN are covalently linked by a single disulphide bond formed between cysteine 46 of gN and cysteine 59 of gM. Exit of gN from the endoplasmic reticulum requires the N-terminal core of gM composed of eight transmembrane domains but is independent of the C-terminal extension of gM. Co-transport of gN and gM to the trans Golgi network also occurs upon replacement of conserved cysteines in gM and gN, suggesting that their physical interaction is mediated by covalent and non-covalent forces. Deletion of gN/UL49.5 using bacterial artificial chromosome (BAC) mutagenesis generated mutant viruses with wild-type growth behaviour, while full deletion of gM/UL10 resulted in an attenuated phenotype. Deletion of gN/UL49.5 in conjunction with various gM/UL10 mutants reduced average plaque sizes to the same extent as either single gM/UL10 mutant, indicating that gN is nonessential for the function performed by gM. We propose that gN functions in gM-dependent as well as gM-independent processes during which it is complemented by other viral factors.


Assuntos
Herpesvirus Humano 1/fisiologia , Glicoproteínas de Membrana/metabolismo , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/metabolismo , Montagem de Vírus , Internalização do Vírus , Retículo Endoplasmático/metabolismo , Deleção de Genes , Complexo de Golgi/metabolismo , Células HeLa , Herpesvirus Humano 1/genética , Humanos , Glicoproteínas de Membrana/genética , Ligação Proteica , Transporte Proteico , Proteínas da Matriz Viral/genética , Ensaio de Placa Viral , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa