Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Chembiochem ; 25(8): e202400143, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38442077

RESUMO

This study explores the potential of controlling organismal development with light by using reversible photomodulation of activity in bioactive compounds. Specifically, our research focuses on plinabulin 1, an inhibitor of tubulin dynamics that contains a photochromic motif called hemipiperazine. The two isomeric forms, Z-1 and E-1, can partially interconvert with light, yet show remarkable thermal stability in darkness. The Z-isomer exhibits higher cytotoxicity due to stronger binding to α-tubulin's colchicine site. The less toxic E-1 form, considered a "pro-drug", can be isolated in vitro and stored. Upon activation by blue or cyan light, it predominantly generates the more toxic Z-1 form. Here we demonstrate that 1 can effectively photomodulate epiboly, a critical microtubule-dependent cell movement during gastrulation in zebrafish embryos. This research highlights the potential of photomodulation for precise and reversible control of cellular activities and organismal development.


Assuntos
Gastrulação , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Gastrulação/fisiologia , Microtúbulos , Tubulina (Proteína)/metabolismo , Embrião não Mamífero
2.
PLoS Genet ; 16(6): e1008774, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555736

RESUMO

Cranial neural crest (NC) contributes to the developing vertebrate eye. By multidimensional, quantitative imaging, we traced the origin of the ocular NC cells to two distinct NC populations that differ in the maintenance of sox10 expression, Wnt signalling, origin, route, mode and destination of migration. The first NC population migrates to the proximal and the second NC cell group populates the distal (anterior) part of the eye. By analysing zebrafish pax6a/b compound mutants presenting anterior segment dysgenesis, we demonstrate that Pax6a/b guide the two NC populations to distinct proximodistal locations. We further provide evidence that the lens whose formation is pax6a/b-dependent and lens-derived TGFß signals contribute to the building of the anterior segment. Taken together, our results reveal multiple roles of Pax6a/b in the control of NC cells during development of the anterior segment.


Assuntos
Segmento Anterior do Olho/metabolismo , Crista Neural/metabolismo , Neurogênese , Fator de Transcrição PAX6/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Segmento Anterior do Olho/citologia , Segmento Anterior do Olho/embriologia , Movimento Celular , Mutação , Crista Neural/citologia , Crista Neural/embriologia , Neurônios/citologia , Neurônios/metabolismo , Fator de Transcrição PAX6/genética , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
3.
Development ; 146(4)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30760481

RESUMO

Specification of neurons in the spinal cord relies on extrinsic and intrinsic signals, which in turn are interpreted by expression of transcription factors. V2 interneurons develop from the ventral aspects of the spinal cord. We report here a novel neuronal V2 subtype, named V2s, in zebrafish embryos. Formation of these neurons depends on the transcription factors sox1a and sox1b. They develop from common gata2a- and gata3-dependent precursors co-expressing markers of V2b and V2s interneurons. Chemical blockage of Notch signalling causes a decrease in V2s and an increase in V2b cells. Our results are consistent with the existence of at least two types of precursor arranged in a hierarchical manner in the V2 domain. V2s neurons grow long ipsilateral descending axonal projections with a short branch at the ventral midline. They acquire a glycinergic neurotransmitter type during the second day of development. Unilateral ablation of V2s interneurons causes a delay in touch-provoked escape behaviour, suggesting that V2s interneurons are involved in fast motor responses.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Interneurônios/metabolismo , Neurônios Motores/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Medula Espinal/metabolismo , Peixe-Zebra/embriologia , Animais , Comportamento Animal , Fator de Transcrição GATA2/metabolismo , Genótipo , Glicina/química , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Receptores Notch/metabolismo , Transdução de Sinais , Especificidade da Espécie , Medula Espinal/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
4.
Mov Disord ; 37(2): 365-374, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34820905

RESUMO

BACKGROUND: The dystonias are a heterogeneous group of hyperkinetic disorders characterized by sustained or intermittent muscle contractions that cause abnormal movements and/or postures. Although more than 200 causal genes are known, many cases of primary dystonia have no clear genetic cause. OBJECTIVES: To identify the causal gene in a consanguineous family with three siblings affected by a complex persistent generalized dystonia, generalized epilepsy, and mild intellectual disability. METHODS: We performed exome sequencing in the parents and two affected siblings and characterized the expression of the identified gene by immunohistochemistry in control human and zebrafish brains. RESULTS: We identified a novel missense variant (c.142G>A (NM_032192); p.Glu48Lys) in the protein phosphatase 1 regulatory inhibitor subunit 1B gene (PPP1R1B) that was homozygous in all three siblings and heterozygous in the parents. This gene is also known as dopamine and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32) and has been involved in the pathophysiology of abnormal movements. The uncovered variant is absent in public databases and modifies the conserved glutamate 48 localized close to the serine 45 phosphorylation site. The PPP1R1B protein was shown to be expressed in cells and regions involved in movement control, including projection neurons of the caudate-putamen, substantia nigra neuropil, and cerebellar Purkinje cells. The latter cells were also confirmed to be positive for PPP1R1B expression in the zebrafish brain. CONCLUSIONS: We report the association of a PPP1R1B/DARPP-32 variant with generalized dystonia in man. It might be relevant to include the sequencing of this new gene in the diagnosis of patients with otherwise unexplained movement disorders. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Distonia , Distúrbios Distônicos , Animais , Distúrbios Distônicos/genética , Homozigoto , Humanos , Peixe-Zebra
5.
Stem Cells ; 38(7): 875-889, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246536

RESUMO

In the telencephalon of adult zebrafish, the inhibitor of DNA binding 1 (id1) gene is expressed in radial glial cells (RGCs), behaving as neural stem cells (NSCs), during constitutive and regenerative neurogenesis. Id1 controls the balance between resting and proliferating states of RGCs by promoting quiescence. Here, we identified a phylogenetically conserved cis-regulatory module (CRM) mediating the specific expression of id1 in RGCs. Systematic deletion mapping and mutation of conserved transcription factor binding sites in stable transgenic zebrafish lines reveal that this CRM operates via conserved smad1/5 and 4 binding motifs under both homeostatic and regenerative conditions. Transcriptome analysis of injured and uninjured telencephala as well as pharmacological inhibition experiments identify a crucial role of bone morphogenetic protein (BMP) signaling for the function of the CRM. Our data highlight that BMP signals control id1 expression and thus NSC proliferation during constitutive and induced neurogenesis.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Encéfalo/metabolismo , Proteína 1 Inibidora de Diferenciação , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Transdução de Sinais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
6.
Dev Genes Evol ; 230(1): 37, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31989242

RESUMO

In the originally published article, the first names and family names of the authors were interchanged, hence not correct. The correct presentation of names is presented above.

7.
Dev Genes Evol ; 230(1): 27-36, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31838648

RESUMO

Otospiralin (OTOSP) is a small protein of unknown function, expressed in fibrocytes of the inner ear and required for normal cochlear auditory function. Despite its conservation from fish to mammals, expression of otospiralin was only investigated in mammals. Here, we report for the first time the expression profile of OTOS orthologous genes in zebrafish (Danio rerio): otospiralin and si:ch73-23l24.1 (designated otospiralin-like). In situ hybridization analyses in zebrafish embryos showed a specific expression of otospiralin-like in notochord (from 14 to 48 hpf) and similar expression patterns for otospiralin and otospiralin-like in gut (from 72 to 120 hpf), swim bladder (from 96 to 120 hpf) and inner ear (at 120 hpf). Morpholino knockdown of otospiralin and otospiralin-like showed no strong change of the body structure of the embryos at 5 dpf and the inner ear was normally formed. Nevertheless, knockdown embryos showed a reduced number of kinocilia in the lateral crista, indicating that these genes play an important role in kinocilium formation. RT-qPCR revealed that otospiralin is highly expressed in adult zebrafish inner ear comparing to the others analyzed tissues as previously shown for mice. Interestingly, otospiralin-like was not detected in the inner ear which suggests that otospiralin have a more important function in hearing than otospiralin-like. Phylogenetic analysis of otospiralin proteins in vertebrates indicated the presence of two subgroups and supported the functional divergence observed in zebrafish for otospiralin and otospiralin-like genes. This study offers the first insight into the expression of otospiralin and otospiralin-like in zebrafish. Expression data point to an important role for otospiralin in zebrafish hearing and a specific role for otospiralin-like in notochord vacuolization.


Assuntos
Duplicação Gênica , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Morfolinos , Filogenia , Transcriptoma , Vertebrados/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
8.
Genome Res ; 23(11): 1938-50, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24002785

RESUMO

Spatiotemporal control of gene expression is central to animal development. Core promoters represent a previously unanticipated regulatory level by interacting with cis-regulatory elements and transcription initiation in different physiological and developmental contexts. Here, we provide a first and comprehensive description of the core promoter repertoire and its dynamic use during the development of a vertebrate embryo. By using cap analysis of gene expression (CAGE), we mapped transcription initiation events at single nucleotide resolution across 12 stages of zebrafish development. These CAGE-based transcriptome maps reveal genome-wide rules of core promoter usage, structure, and dynamics, key to understanding the control of gene regulation during vertebrate ontogeny. They revealed the existence of multiple classes of pervasive intra- and intergenic post-transcriptionally processed RNA products and their developmental dynamics. Among these RNAs, we report splice donor site-associated intronic RNA (sRNA) to be specific to genes of the splicing machinery. For the identification of conserved features, we compared the zebrafish data sets to the first CAGE promoter map of Tetraodon and the existing human CAGE data. We show that a number of features, such as promoter type, newly discovered promoter properties such as a specialized purine-rich initiator motif, as well as sRNAs and the genes in which they are detected, are conserved in mammalian and Tetraodon CAGE-defined promoter maps. The zebrafish developmental promoterome represents a powerful resource for studying developmental gene regulation and revealing promoter features shared across vertebrates.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Purinas/metabolismo , Sítio de Iniciação de Transcrição , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Evolução Molecular , Perfilação da Expressão Gênica , Genes , Genoma , Filogenia , Regiões Promotoras Genéticas , RNA/genética , RNA/metabolismo , Capuzes de RNA/genética , Splicing de RNA , Transcriptoma , Vertebrados/genética
9.
Stem Cells ; 33(3): 892-903, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25376791

RESUMO

The teleost brain has the remarkable ability to generate new neurons and to repair injuries during adult life stages. Maintaining life-long neurogenesis requires careful management of neural stem cell pools. In a genome-wide expression screen for transcription regulators, the id1 gene, encoding a negative regulator of E-proteins, was found to be upregulated in response to injury. id1 expression was mapped to quiescent type I neural stem cells in the adult telencephalic stem cell niche. Gain and loss of id1 function in vivo demonstrated that Id1 promotes stem cell quiescence. The increased id1 expression observed in neural stem cells in response to injury appeared independent of inflammatory signals, suggesting multiple antagonistic pathways in the regulation of reactive neurogenesis. Together, we propose that Id1 acts to maintain the neural stem cell pool by counteracting neurogenesis-promoting signals.


Assuntos
Encéfalo/citologia , Proteína 2 Inibidora de Diferenciação/fisiologia , Neurogênese/fisiologia , Neuroglia/citologia , Telencéfalo/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Animais , Encéfalo/metabolismo , Proliferação de Células/fisiologia , Proteína 2 Inibidora de Diferenciação/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Neuroglia/metabolismo , Telencéfalo/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Bioinformatics ; 30(5): 726-33, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24135262

RESUMO

MOTIVATION: To reliably assess the effects of unknown chemicals on the development of fluorescently labeled sensory-, moto- and interneuron populations in the spinal cord of zebrafish, automated data analysis is essential. RESULTS: For the evaluation of a high-throughput screen of a large chemical library, we developed a new method for the automated extraction of quantitative information from green fluorescent protein (eGFP) and red fluorescent protein (RFP) labeled spinal cord neurons in double-transgenic zebrafish embryos. The methodology comprises region of interest detection, intensity profiling with reference comparison and neuron distribution histograms. All methods were validated on a manually evaluated pilot study using a Notch inhibitor dose-response experiment. The automated evaluation showed superior performance to manual investigation regarding time consumption, information detail and reproducibility. AVAILABILITY AND IMPLEMENTATION: Being part of GNU General Public Licence (GNU-GPL) licensed open-source MATLAB toolbox Gait-CAD, an implementation of the presented methods is publicly available for download at http://sourceforge.net/projects/zebrafishimage/.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Neurônios/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Peixe-Zebra/genética , Algoritmos , Animais , Animais Geneticamente Modificados , Corantes Fluorescentes , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Reprodutibilidade dos Testes , Medula Espinal/citologia , Medula Espinal/embriologia , Peixe-Zebra/embriologia , Proteína Vermelha Fluorescente
11.
Dev Biol ; 380(2): 259-73, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23665472

RESUMO

The circadian clock co-ordinates physiology and behavior with the day/night cycle. It consists of a transcriptional-translational feedback loop that generates self-sustained oscillations in transcriptional activity with a roughly 24h period via E-box enhancer elements. Numerous in vivo aspects of core clock feedback loop function are still incompletely understood, including its maturation during development, tissue-specific activity and perturbation in disease states. Zebrafish are promising models for biomedical research due to their high regenerative capacity and suitability for in vivo drug screens, and transgenic zebrafish lines are valuable tools to study transcriptional activity in vivo during development. To monitor the activity of the core clock feedback loop in vivo, we created a transgenic zebrafish line expressing a luciferase reporter gene under the regulation of a minimal promoter and four E-boxes. This Tg(4xE-box:Luc) line shows robust oscillating reporter gene expression both under light-dark cycles and upon release into constant darkness. Luciferase activity starts to oscillate during the first days of development, indicating that the core clock loop is already functional at an early stage. To test whether the Tg(4xE-box:Luc) line could be used in drug screens aimed at identifying compounds that target the circadian clock in vivo, we examined drug effects on circadian period. We were readily able to detect period changes as low as 0.7h upon treatment with the period-lengthening drugs lithium chloride and longdaysin in an assay set-up suitable for large-scale screens. Reporter gene mRNA expression is also detected in the adult brain and reveals differential clock activity across the brain, overlapping with endogenous clock gene expression. Notably, core clock activity is strongly correlated with brain regions where neurogenesis takes place and can be detected in several types of neural progenitors. Our results demonstrate that the Tg(4xE-box:Luc) line is an excellent tool for studying the regulation of the circadian clock and its maturation in vivo and in real time. Furthermore, it is highly suitable for in vivo screens targeting the core clock mechanism that take into account the complexity of an intact organism. Finally, it allows mapping of clock activity in the brain of a vertebrate model organism with prominent adult neurogenesis and high regeneration capacity.


Assuntos
Relógios Circadianos/fisiologia , Elementos E-Box/fisiologia , Neurogênese , Peixe-Zebra/fisiologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Animais Geneticamente Modificados , Encéfalo/fisiologia , Relógios Circadianos/efeitos dos fármacos , Genes Reporter , Cloreto de Lítio/farmacologia , Luciferases/genética , Luminescência , Regeneração , Peixe-Zebra/embriologia
12.
Dev Biol ; 380(2): 351-62, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23684812

RESUMO

Transcription is the primary step in the retrieval of genetic information. A substantial proportion of the protein repertoire of each organism consists of transcriptional regulators (TRs). It is believed that the differential expression and combinatorial action of these TRs is essential for vertebrate development and body homeostasis. We mined the zebrafish genome exhaustively for genes encoding TRs and determined their expression in the zebrafish embryo by sequencing to saturation and in situ hybridisation. At the evolutionary conserved phylotypic stage, 75% of the 3302 TR genes encoded in the genome are already expressed. The number of expressed TR genes increases only marginally in subsequent stages and is maintained during adulthood suggesting important roles of the TR genes in body homeostasis. Fewer than half of the TR genes (45%, n=1711 genes) are expressed in a tissue-restricted manner in the embryo. Transcripts of 207 genes were detected in a single tissue in the 24h embryo, potentially acting as regulators of specific processes. Other TR genes were expressed in multiple tissues. However, with the exception of certain territories in the nervous system, we did not find significant synexpression suggesting that most tissue-restricted TRs act in a freely combinatorial fashion. Our data indicate that elaboration of body pattern and function from the phylotypic stage onward relies mostly on redeployment of TRs and post-transcriptional processes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genes Reguladores , Peixe-Zebra/embriologia , Animais , Padronização Corporal , Biblioteca Gênica , Transcrição Gênica , Peixe-Zebra/genética
13.
FEBS J ; 291(4): 646-662, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37498183

RESUMO

The vertebrate nervous system is composed of a wide range of neurons and complex synaptic connections, raising the intriguing question of how neuronal diversity is generated. The spinal cord provides an excellent model for exploring the mechanisms governing neuronal diversity due to its simple neural network and the conserved molecular processes involved in neuron formation and specification during evolution. This review specifically examines two distinct progenitor domains present in the zebrafish ventral spinal cord: the lateral floor plate (LFP) and the p2 progenitor domain. The LFP is responsible for the production of GABAergic Kolmer-Agduhr neurons (KA″), glutamatergic V3 neurons, and intraspinal serotonergic neurons, while the p2 domain generates V2 precursors that subsequently differentiate into three unique subpopulations of V2 neurons, namely glutamatergic V2a, GABAergic V2b, and glycinergic V2s. Based on recent findings, we will examine the fundamental signaling pathways and transcription factors that play a key role in the specification of these diverse neurons and neuronal subtypes derived from the LFP and p2 progenitor domains.


Assuntos
Interneurônios , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Interneurônios/metabolismo , Medula Espinal/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
14.
J Food Sci ; 89(6): 3729-3744, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38709878

RESUMO

Citrus fruits are a diverse and economically important group of fruit crops known for their distinctive flavors and high nutritional value. Their cultivation and consumption contribute significantly to the global agricultural economy and offer a wide range of health benefits. Among the genetic diversity of citrus species, Citrus x limon (L.) Osbeck is particularly relevant due to its chemical composition and potential health benefits. Two cultivars from the Sicily region (southern Italy) were compared for their phenolic content and preliminary antioxidant activity to select the distinctive extract with potential biological activity. A detailed characterization revealed the occurrence of phenolics, coumarins, and flavonoids. The quantification of metabolites contained in the selected extract was performed by an ultrahigh-performance liquid chromatographic method coupled with an ultraviolet detector. Different concentrations were tested in vivo through the fish embryo acute toxicity test, and the 50% lethal dose of 107,833 µg mL-1 was calculated. Finally, the effect of the extract on hatching was evaluated, and a dose-dependent relationship with the accelerated hatching rate was reported, suggesting a Femminello Zagara Bianca green peel upregulating effect on the hatching enzymes. PRACTICAL APPLICATION: Citrus fruits and their products continue to be one of the natural food sources with the highest waste output. In this study, we demonstrate how food industry waste, particularly lemon peel, is rich in bioactive compounds with anti-inflammatory and antioxidant properties that may be used in the nutraceuticals industry.


Assuntos
Antioxidantes , Citrus , Embrião não Mamífero , Flavonoides , Frutas , Metabolômica , Fenóis , Extratos Vegetais , Peixe-Zebra , Animais , Citrus/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Frutas/química , Antioxidantes/farmacologia , Antioxidantes/análise , Embrião não Mamífero/efeitos dos fármacos , Fenóis/análise , Fenóis/toxicidade , Metabolômica/métodos , Flavonoides/análise , Sicília , Cumarínicos/análise , Cromatografia Líquida de Alta Pressão/métodos
15.
iScience ; 27(2): 108849, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303730

RESUMO

Repair of lesions in the plasma membrane is key to sustaining cellular homeostasis. Cells maintain cytoplasmic as well as membrane-bound stores of repair proteins that can rapidly precipitate at the site of membrane lesions. However, little is known about the origins of lipids and proteins for resealing and repair of the plasma membrane. Here we study the dynamics of caveolar proteins after laser-induced lesioning of plasma membranes of mammalian C2C12 tissue culture cells and muscle cells of intact zebrafish embryos. Single-molecule diffusivity measurements indicate that caveolar clusters break up into smaller entities after wounding. Unlike Annexins and Dysferlin, caveolar proteins do not accumulate at the lesion patch. In caveolae-depleted cavin1a knockout zebrafish embryos, lesion patch formation is impaired, and injured cells show reduced survival. Our data suggest that caveolae disassembly releases surplus plasma membrane near the lesion to facilitate membrane repair after initial patch formation for emergency sealing.

16.
Development ; 137(16): 2713-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20610488

RESUMO

In the zebrafish spinal cord, two classes of neurons develop from the lateral floor plate: Kolmer-Agduhr' (KA') and V3 interneurons. We show here that the differentiation of the correct number of KA' cells depends on the activity of the homeobox transcription factor Nkx2.9. This factor acts in concert with Nkx2.2a and Nkx2.2b. These factors are also required for the expression of the zinc-finger transcription factor Gata2 in the lateral floor plate. In turn, Gata2 is necessary for expression of the basic helix-loop-helix transcription factor Tal2 that acts upstream of the GABA-synthesizing enzyme glutamic acid decarboxylase 67 gene (gad67) in KA' cells. Expression of the transcription factor Sim1, which marks the V3 interneurons in the lateral floor plate, depends also on the three Nkx2 factors. sim1 expression does not require, however, gata2 and tal2. KA' cells of the lateral floor plate and the KA' cells located more dorsally in the spinal cord share expression of transcription factors. The functional connections between the different regulatory genes, however, differ in the two GABAergic cell types: although gata2 and tal2 are expressed in KA' cells, they are dispensable for gad67 expression in these cells. Instead, olig2 and gata3 are required for the differentiation of gad67-expressing KA' cells. This suggests that the layout of regulatory networks is crucially dependent on the lineage that differs between KA' and KA' cells.


Assuntos
Interneurônios/citologia , Peixe-Zebra/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo , Tubo Neural/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
17.
Environ Sci Technol ; 47(7): 3316-25, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23458150

RESUMO

Methyl mercury (MeHg) is a neurotoxicant with adverse effects on the development of the nervous system from fish to man. Despite a detailed understanding of the molecular mechanisms by which MeHg affects cellular homeostasis, it is still not clear how MeHg causes developmental neurotoxicity. We performed here a genome-wide transcriptional analysis of MeHg-exposed zebrafish embryos and combined this with a whole-mount in situ expression analysis of 88 MeHg-affected genes. The majority of the analyzed genes showed tissue- and region-restricted responses in various organs and tissues. The genes were linked to gene ontology terms like oxidative stress, transport and cell protection. Areas even within the central nervous system (CNS) are affected differently resulting in distinct cellular stress responses. Our study revealed an unexpected heterogeneity in gene responses to MeHg exposure in different tissues and neuronal subregions, even though the known molecular action of MeHg would predict a similar burden of exposed cells. The overall structure of the developing brain of MeHg-exposed embryos appeared normal, suggesting that the mechanism leading to differentiation of the CNS is not overtly affected by exposure to MeHg. We propose that MeHg disturbs the function of the CNS by disturbing the cellular homeostasis. As these cellular stress responses comprise genes that are also involved in normal neuronal activity and learning, MeHg may affect the developing CNS in a subtle manner that manifests itself in behavioral deficits.


Assuntos
Sistema Nervoso Central/metabolismo , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Compostos de Metilmercúrio/toxicidade , Neurotoxinas/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Embrião não Mamífero/efeitos dos fármacos , Exposição Ambiental , Ontologia Genética , Hibridização In Situ , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
18.
iScience ; 26(8): 107342, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37529101

RESUMO

Sox transcription factors are crucial for vertebrate nervous system development. In zebrafish embryo, sox1 genes are expressed in neural progenitor cells and neurons of ventral spinal cord. Our recent study revealed that the loss of sox1a and sox1b function results in a significant decline of V2 subtype neurons (V2s). Using single-cell RNA sequencing, we analyzed the transcriptome of sox1a lineage progenitors and neurons in the zebrafish spinal cord at four time points during embryonic development, employing the Tg(sox1a:eGFP) line. In addition to previously characterized sox1a-expressing neurons, we discovered the expression of sox1a in late-developing intraspinal serotonergic neurons (ISNs). Developmental trajectory analysis suggests that ISNs arise from lateral floor plate (LFP) progenitor cells. Pharmacological inhibition of the Notch signaling pathway revealed its role in negatively regulating LFP progenitor cell differentiation into ISNs. Our findings highlight the zebrafish LFP as a progenitor domain for ISNs, alongside known Kolmer-Agduhr (KA) and V3 interneurons.

19.
J Comp Neurol ; 531(17): 1812-1827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750011

RESUMO

Insulin is a peptide hormone that plays a central role in the regulation of circulating blood glucose in vertebrates, including zebrafish. Increasing evidence has demonstrated the important role of insulin in many brain functions. In zebrafish, two insulin receptor genes (insra and insrb) have been identified. However, their biodistribution in the adult brain as well as their cell-specific expression pattern has not been well described. Using gene expression analysis, in situ hybridization and transgenic fish, we confirmed the expression of insra, insrb, and irs1 (insulin receptor substrate 1, the downstream effector of insulin receptor) in the brain of adult zebrafish and characterized their specific expression in neurons and neural stem cells (radial glia). After demonstrating that intracerebroventricular (ICV) injection resulted in the diffusion of the injected solution within the ventricular system, we analyzed the effect of insulin ICV injection on neurogenesis. We showed that insulin promotes ventricular cell proliferation 24 h postinjection. This neurogenic effect appeared to be independent of neuroinflammatory processes. Also, after a mechanical telencephalic stab-wound injury, we highlighted the overexpression of irs1 gene 5 days postlesion notably in the ventricular zone where radial glial cells (RGCs) are localized, suggesting key roles of insulin signaling in regenerative processes. Finally, our results reinforced the expression of insulin-related proteins in the brain of adult zebrafish, highlighting the potential role of insulin signaling on neurogenesis.

20.
Cells ; 12(2)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36672187

RESUMO

Over the past century, advances in biotechnology, biochemistry, and pharmacognosy have spotlighted flavonoids, polyphenolic secondary metabolites that have the ability to modulate many pathways involved in various biological mechanisms, including those involved in neuronal plasticity, learning, and memory. Moreover, flavonoids are known to impact the biological processes involved in developing neurodegenerative diseases, namely oxidative stress, neuroinflammation, and mitochondrial dysfunction. Thus, several flavonoids could be used as adjuvants to prevent and counteract neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Zebrafish is an interesting model organism that can offer new opportunities to study the beneficial effects of flavonoids on neurodegenerative diseases. Indeed, the high genome homology of 70% to humans, the brain organization largely similar to the human brain as well as the similar neuroanatomical and neurochemical processes, and the high neurogenic activity maintained in the adult brain makes zebrafish a valuable model for the study of human neurodegenerative diseases and deciphering the impact of flavonoids on those disorders.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Animais , Peixe-Zebra/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa