Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 99: 225-234, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27033948

RESUMO

The E2 promoter binding factor (E2F) proteins are present in almost all eukaryotic organisms and are essential to control several processes, such as the cell cycle progression, cell division, DNA replication, and apoptosis. The E2F family comprises two different types of proteins: the typical E2Fs and atypical E2Fs, which differ structurally and have specific functions. The E2F gene family was described for the first time in plants in 1999, and since then several studies have focused on the functional aspects, but the evolutionary history of this gene family is still unknown. Here, we investigated the evolutionary history of the E2F gene family in plants. Our findings suggest that E2F proteins arose early after the emergence of the eukaryotic species, while DEL proteins appear to have arisen before the metazoan and plants origin probably through a partial duplication of an ancient E2F protein. Our data also suggest that E2Fs activators and repressors appeared twice during evolution, once in the metazoan lineage and again in the embryophyte lineage.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores de Transcrição E2F/genética , Evolução Molecular , Proteínas de Plantas/genética , Viridiplantae/genética , Teorema de Bayes , Proteínas de Ligação a DNA/classificação , Bases de Dados de Proteínas , Fatores de Transcrição E2F/classificação , Filogenia , Proteínas de Plantas/classificação , Regiões Promotoras Genéticas
2.
New Phytol ; 208(3): 776-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26082998

RESUMO

Reactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent studies have demonstrated that succinate dehydrogenase (SDH) also contributes to mitochondrial ROS production. However, the ability of SDH to generate ROS in plants is unclear. The aim of this study was to evaluate the role of SDH in mitochondrial ROS production. Our results demonstrated that SDH is a direct source of ROS in Arabidopsis thaliana and Oryza sativa, and the induction of ROS production by specific SDH inhibitors impaired plant growth. In addition, this effect was accompanied by the down-regulation of cell cycle genes and the up-regulation of stress-related genes. However, the partial inhibition of SDH by a competitive inhibitor decreased ROS production, which was associated with increased shoot and root growth, and prevented the down-regulation of cell cycle genes and the induction of stress-related genes by noncompetitive inhibitors. In conclusion, SDH plays an important role in ROS production, being a direct source of ROS in plant mitochondria and regulating plant development and stress responses.


Assuntos
Arabidopsis/enzimologia , Mitocôndrias/metabolismo , Desenvolvimento Vegetal , Espécies Reativas de Oxigênio/metabolismo , Succinato Desidrogenase/metabolismo , Ciclo Celular , Estresse Fisiológico
3.
Mitochondrion ; 34: 56-66, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28088649

RESUMO

Fumarate and succinate are known to be present in prebiotic systems essential for the origin of life. The fumarate and succinate interconversion reactions have been conserved throughout evolution and are found in all living organisms. The fumarate and succinate interconversion is catalyzed by the enzymes succinate dehydrogenase (SDH) and fumarate reductase (FRD). In this work we show that SDH and FRD are part of a group of enzymes that we propose to designate "fumarate reductase superfamily". Our results demonstrate that these enzymes emerged from a common ancestor and were essential in the development of metabolic pathways involved in energy transduction.


Assuntos
Evolução Biológica , Redes e Vias Metabólicas/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Biotransformação , Fumaratos/metabolismo , Succinatos/metabolismo
4.
Plant Sci ; 214: 74-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24268165

RESUMO

The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance.


Assuntos
Ascorbato Peroxidases/genética , Proteínas de Cloroplastos/genética , Oryza/genética , Estresse Oxidativo/fisiologia , Fotossíntese/genética , Proteínas de Plantas/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Cloroplastos/metabolismo , Eletroforese em Gel Bidimensional , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Herbicidas/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Paraquat/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa