Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Neuroimage ; 271: 120030, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36925087

RESUMO

The nervous and circulatory system interconnects the various organs of the human body, building hierarchically organized subsystems, enabling fine-tuned, metabolically expensive brain-body and inter-organ crosstalk to appropriately adapt to internal and external demands. A deviation or failure in the function of a single organ or subsystem could trigger unforeseen biases or dysfunctions of the entire network, leading to maladaptive physiological or psychological responses. Therefore, quantifying these networks in healthy individuals and patients may help further our understanding of complex disorders involving body-brain crosstalk. Here we present a generalized framework to automatically estimate metabolic inter-organ connectivity utilizing whole-body functional positron emission tomography (fPET). The developed framework was applied to 16 healthy subjects (mean age ± SD, 25 ± 6 years; 13 female) that underwent one dynamic 18F-FDG PET/CT scan. Multiple procedures of organ segmentation (manual, automatic, circular volumes) and connectivity estimation (polynomial fitting, spatiotemporal filtering, covariance matrices) were compared to provide an optimized thorough overview of the workflow. The proposed approach was able to estimate the metabolic connectivity patterns within brain regions and organs as well as their interactions. Automated organ delineation, but not simplified circular volumes, showed high agreement with manual delineation. Polynomial fitting yielded similar connectivity as spatiotemporal filtering at the individual subject level. Furthermore, connectivity measures and group-level covariance matrices did not match. The strongest brain-body connectivity was observed for the liver and kidneys. The proposed framework offers novel opportunities towards analyzing metabolic function from a systemic, hierarchical perspective in a multitude of physiological pathological states.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Feminino , Humanos , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Corpo Humano , Tomografia por Emissão de Pósitrons/métodos , Masculino , Adulto Jovem , Adulto
2.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761975

RESUMO

To investigate the use of kinetic parameters derived from direct Patlak reconstructions of [68Ga]Ga-PSMA-11 positron emission tomography/computed tomography (PET/CT) to predict the histological grade of malignancy of the primary tumor of patients with prostate cancer (PCa). Thirteen patients (mean age 66 ± 10 years) with a primary, therapy-naïve PCa (median PSA 9.3 [range: 6.3-130 µg/L]) prior radical prostatectomy, were recruited in this exploratory prospective study. A dynamic whole-body [68Ga]Ga-PSMA-11 PET/CT scan was performed for all patients. Measured quantification parameters included Patlak slope (Ki: absolute rate of tracer consumption) and Patlak intercept (Vb: degree of tracer perfusion in the tumor). Additionally, the mean and maximum standardized uptake values (SUVmean and SUVmax) of the tumor were determined from a static PET 60 min post tracer injection. In every patient, initial PSA (iPSA) values that were also the PSA level at the time of the examination and final histology results with Gleason score (GS) grading were correlated with the quantitative readouts. Collectively, 20 individual malignant prostate lesions were ascertained and histologically graded for GS with ISUP classification. Six lesions were classified as ISUP 5, two as ISUP 4, eight as ISUP 3, and four as ISUP 2. In both static and dynamic PET/CT imaging, the prostate lesions could be visually distinguished from the background. The average values of the SUVmean, slope, and intercept of the background were 2.4 (±0.4), 0.015 1/min (±0.006), and 52% (±12), respectively. These were significantly lower than the corresponding parameters extracted from the prostate lesions (all p < 0.01). No significant differences were found between these values and the various GS and ISUP (all p > 0.05). Spearman correlation coefficient analysis demonstrated a strong correlation between static and dynamic PET/CT parameters (all r ≥ 0.70, p < 0.01). Both GS and ISUP grading revealed only weak correlations with the mean and maximum SUV and tumor-to-background ratio derived from static images and dynamic Patlak slope. The iPSA demonstrated no significant correlation with GS and ISUP grading or with dynamic and static PET parameter values. In this cohort of mainly high-risk PCa, no significant correlation between [68Ga]Ga-PSMA-11 perfusion and consumption and the aggressiveness of the primary tumor was observed. This suggests that the association between SUV values and GS may be more distinctive when distinguishing clinically relevant from clinically non-relevant PCa.

3.
J Nucl Cardiol ; 29(2): 492-502, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32696137

RESUMO

AIM: The aim of this study was to evaluate and correct for partial-volume-effects (PVE) on [68Ga]Ga-Pentixafor uptake in atherosclerotic plaques of the carotid arteries, and the impact of ignoring bone in MR-based attenuation correction (MR-AC). METHODS: Twenty [68Ga]Ga-pentixafor PET/MR examinations including a high-resolution T2-TSE MR of the neck were included in this study. Carotid plaques located at the carotid bifurcation were delineated and the anatomical information was used for partial-volume-correction (PVC). Mean and max tissue-to-background ratios (TBR) of the [68Ga]Ga-Pentixafor uptake were compared for standard and PVC-PET images. A potential influence of ignoring bone in MR-AC was assessed in a subset of the data reconstructed after incorporating bone into MR-AC and a subsequent comparison of standardized-uptake values (SUV). RESULTS: In total, 34 atherosclerotic plaques were identified. Following PVC, mean and max TBR increased by 77 and 95%, respectively, when averaged across lesions. When accounting for bone in the MR-AC, SUV of plaque changed by 0.5%. CONCLUSION: Quantitative readings of [68Ga]Ga-pentixafor uptake in plaques are strongly affected by PVE, which can be reduced by PVC. Including bone information into the MR-AC yielded no clinically relevant effect on tracer quantification.


Assuntos
Radioisótopos de Gálio , Placa Aterosclerótica , Humanos , Artérias Carótidas/diagnóstico por imagem , Complexos de Coordenação , Imageamento por Ressonância Magnética/métodos , Peptídeos Cíclicos , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos
4.
J Nucl Cardiol ; 29(3): 1003-1017, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33094471

RESUMO

BACKGROUND: Cardiac positron emission tomography/magnetic resonance imaging (PET/MRI) can assess various cardiovascular diseases. In this study, we intra-individually compared right (RV) and left ventricular (LV) parameters obtained from dual-tracer PET/MRI scan. METHODS: In 22 patients with coronary heart disease (69 ± 9 years) dynamic [13N]NH3 (NH3) and [18F]FDG (FDG) PET scans were acquired. The first 2 minutes were used to calculate LV and RV first-pass ejection fraction (FPEF). Additionally, LV end-systolic (LVESV) and end-diastolic (LVEDV) volume and ejection fraction (LVEF) were calculated from the early (EP) and late-myocardial phases (LP). MRI served as a reference. RESULTS: RVFPEF and LVFPEF from FDG and NH3 as well as RVEF and LVEF from MRI were (28 ± 11%, 32 ± 15%), (32 ± 11%, 41 ± 14%) and (42 ± 16%, 45 ± 19%), respectively. LVESV, LVEDV and LVEF from EP FDG and NH3 in 8 and 16 gates were [71 (15 to 213 mL), 98 (16 to 241 mL), 32 ± 17%] and [50 (17 to 206 mL), 93 (13 to 219 mL), 36 ± 17%] as well as [60 (19 to 360 mL), 109 (56 to 384 mL), 41 ± 22%] and [54 (16 to 371 mL), 116 (57 to 431 mL), 46 ± 24%], respectively. Moreover, LVESV, LVEDV and LVEF acquired from LP FDG and NH3 were (85 ± 63 mL, 138 ± 63 mL, 47 ± 19%) and (79 ± 56 mL, 137 ± 63 mL, 47 ± 20%), respectively. The LVESV, LVEDV from MRI were 93 ± 66 mL and 153 ± 71 mL, respectively. Significant correlations were observed for RVFPEF and LVFPEF between FDG and MRI (R = .51, P = .01; R = .64, P = .001), respectively. LVESV, LVEDV, and LVEF revealed moderate to strong correlations to MRI when they acquired from EP FDG and NH3 in 16 gates (all R > .7, P = .000). Similarly, all LV parameters from LP FDG and NH3 correlated good to strongly positive with MRI (all R > .7, and P < .001), except EDV from NH3 weakly correlated to EDV of MRI (R = .54, P < .05). Generally, Bland-Altman plots showed good agreements between PET and MRI. CONCLUSIONS: Deriving LV and RV functional values from various phases of dynamic NH3 and FDG PET is feasible. These results could open a new perspective for further clinical applications of the PET examinations.


Assuntos
Doença da Artéria Coronariana , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Volume Sistólico , Tomografia Computadorizada por Raios X
5.
Eur J Nucl Med Mol Imaging ; 47(1): 51-60, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31410538

RESUMO

PURPOSE: PET/MRI has recently been introduced into clinical practice. We prospectively investigated the clinical impact of PET/MRI compared with PET/CT, in a mixed population of cancer patients, and performed an economic evaluation of PET/MRI. METHODS: Cancer patients referred for routine staging or follow-up by PET/CT underwent consecutive PET/CT and PET/MRI, using single applications of [18F]FDG, [68Ga]Ga-DOTANOC, or [18F]FDOPA, depending on tumor histology. PET/MRI and PET/CT were rated separately, and lesions were assessed per anatomic region; based on regions, per-examination and per-patient accuracies were determined. A simulated, multidisciplinary team meeting served as reference standard and determined whether differences between PET/CT and PET/MRI affected patient management. The McNemar tests were used to compare accuracies, and incremental cost-effectiveness ratios (ICERs) for PET/MRI were calculated. RESULTS: Two hundred sixty-three patients (330 same-day PET/CT and PET/MRI examinations) were included. PET/MRI was accurate in 319/330 examinations and PET/CT in 277/330 examinations; the respective accuracies of 97.3% and 83.9% differed significantly (P < 0.001). The additional findings on PET/MRI-mainly liver and brain metastases-had implications for patient management in 21/263 patients (8.0%). The per-examination cost was 596.97 EUR for PET/MRI and 405.95 EUR for PET/CT. ICERs for PET/MRI were 14.26 EUR per percent of diagnostic accuracy and 23.88 EUR per percent of correctly managed patients. CONCLUSIONS: PET/MRI enables more appropriate management than PET/CT in a nonnegligible fraction of cancer patients. Since the per-examination cost is about 50% higher for PET/MRI than for PET/CT, a histology-based triage of patients to either PET/MRI or PET/CT may be meaningful.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Estudos Prospectivos
6.
Trop Med Int Health ; 24(6): 663-670, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30851233

RESUMO

BACKGROUND: [18 F]-2-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography/computed tomography (FDG-PET/CT) imaging provides important information about the size and metabolic activity of lesions caused by Echinococcus multilocularis and is therefore recommended for the initial assessment and follow-up of human alveolar echinococcosis (AE). The introduction of positron emission tomography/magnetic resonance imaging (PET/MRI) into clinical practice in affluent health care systems provides an alternative dual imaging modality, which has not yet been evaluated for AE. OBJECTIVE: Here, we describe the initial clinical experience with comparative PET/CT and PET/MR imaging in four human AE patients at an Austrian reference centre. RESULTS: PET/MR imaging showed comparable diagnostic capacity for liver lesions attributable to E. multilocularis infection, with a discrepancy only in the assessment of calcifications in one patient. Effective doses of radiation were 30.4-31 mSV for PET/CT, which were reduced in PET/MRI to the exposure of 18 F-FDG only (4.9-5.5 mSv). CONCLUSIONS: PET/MRI provides comparable diagnostic information for AE management. The reduction in radiation exposure compared to PET/CT may be of particular importance for children and young patients not amenable for curative surgery requiring repeated long-term follow-up with dual imaging modalities. Further studies are warranted to prospectively evaluate the potential of PET/MRI in the management of AE.


DONNÉES DE BASE: L'imagerie par la tomographie par émission de positrons au [18F]-2-fluoro-2-désoxy-D-glucose (18F-FDG)/tomodensitométrie (TEP/TDM) fournit des informations importantes sur la taille et l'activité métabolique des lésions causées par Echinococcus multilocularis et est donc recommandée pour l'évaluation initiale et le suivi de l'échinococcose alvéolaire (EA) humaine. L'introduction de la tomographie par émission de positons/imagerie par résonance magnétique (TEP/IRM) dans la pratique clinique des systèmes de soins de santé aisés offre une alternative de modalité d'imagerie double, qui n'a pas encore été évaluée pour l'EA. OBJECTIF: Nous décrivons ici l'expérience clinique initiale comparant les imageries TEP/TDM et TEP/IRM chez quatre patients humains atteints d'EA dans un centre de référence autrichien. RÉSULTATS: L'imagerie TEP/IRM a montré une capacité de diagnostic comparable pour les lésions hépatiques imputables à une infection à E. multilocularis, avec une divergence uniquement lors de l'évaluation des calcifications chez un patient. Les doses efficaces de rayonnement étaient de 30,4 à 31 mSV pour la TEP/TDM, qui ont été réduites dans la TEP/IRM à une exposition au 18 F-FDG uniquement (4,9 à 5,5 mSv). CONCLUSIONS: La TEP/IRM fournit des informations de diagnostic comparables pour la prise en charge de l'EA. La réduction de l'exposition aux rayonnements comparée à la TEP/TDM pourrait avoir une importance particulière pour les enfants et les jeunes patients ne pouvant pas subir de chirurgie curative nécessitant un suivi répété à long terme avec des modalités de double imagerie. Des études supplémentaires sont nécessaires pour évaluer de manière prospective le potentiel de la TEP/IRM dans la prise en charge de l'EA.


Assuntos
Equinococose/diagnóstico por imagem , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Animais , Áustria , Feminino , Fluordesoxiglucose F18 , Humanos , Fígado/parasitologia , Masculino , Pessoa de Meia-Idade
7.
Eur Radiol ; 29(8): 4276-4285, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30635757

RESUMO

AIM: To assess if tumour grading based on dynamic [18F]FET positron emission tomography/magnetic resonance imaging (PET/MRI) studies is affected by different MRI-based attenuation correction (AC) methods. METHODS: Twenty-four patients with suspected brain tumours underwent dynamic [18F]FET-PET/MRI examinations and subsequent low-dose computed tomography (CT) scans of the head. The dynamic PET data was reconstructed using the following AC methods: standard Dixon-based AC and ultra-short echo time MRI-based AC (MR-AC) and a model-based AC approach. All data were reconstructed also using CT-based AC (reference). For all lesions and reconstructions, time-activity curves (TACs) and time to peak (TTP) were extracted using different region-of-interest (ROI) and volume-of-interest (VOI) definitions. According to the most common evaluation approaches, TACs were categorised into two or three distinct curve patterns. Changes in TTP and TAC patterns compared to PET using CT-based AC were reported. RESULTS: In the majority of cases, TAC patterns did not change. However, TAC pattern changes as well as changes in TTP were observed in up to 8% and 17% of the cases when using different MR-AC methods and ROI/VOI definitions, respectively. However, these changes in TTP and TAC pattern were attributed to different delineations of the ROIs/VOIs in PET corrected with different AC methods. CONCLUSION: PET/MRI using different MR-AC methods can be used for the assessment of TAC patterns in dynamic [18F]FET studies, as long as a meaningful delineation of the area of interest within the tumour is ensured. KEY POINTS: • PET/MRI using different MR-AC methods can be used for dynamic [18F]FET studies. • A meaningful segmentation of the area of interest needs to be ensured, mandating a visual validation of the delineation by an experienced reader.


Assuntos
Neoplasias Encefálicas/diagnóstico , Radioisótopos de Flúor/farmacologia , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
8.
J Labelled Comp Radiopharm ; 62(8): 541-551, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31115089

RESUMO

Several radionuclides of the transition metal manganese are known and accessible. Three of them, 51 Mn, 52m Mn, and 52g Mn, are positron emitters that are potentially interesting for positron emission tomography (PET) applications and, thus, have caught the interest of the radiochemical/radiopharmaceutical and nuclear medicine communities. This mini-review provides an overview of the production routes and physical properties of these radionuclides. For medical imaging, the focus is on the longer-living 52g Mn and its application for the radiolabelling of molecules and other entities exhibiting long biological half-lives, the imaging of manganese-dependent biological processes, and the development of bimodal PET/magnetic resonance imaging (MRI) probes in combination with paramagnetic nat Mn as a contrast agent.


Assuntos
Manganês , Tomografia por Emissão de Pósitrons/métodos , Animais , Humanos , Células Secretoras de Insulina/citologia , Imageamento por Ressonância Magnética , Radioisótopos
9.
J Nucl Cardiol ; 25(5): 1742-1756, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28176255

RESUMO

BACKGROUND: Accurate quantification of plaque imaging using 18F-NaF PET requires partial volume correction (PVC). METHODS: PVC of PET data was implemented by the use of a local projection (LP) method. LP-based PVC was evaluated with an image quality (NEMA) and with a thorax phantom with "plaque-type" lesions of 18-36 mL. The validated PVC method was then applied to a cohort of 17 patients, each with at least one plaque in the carotid or ascending aortic arteries. In total, 51 calcified (HU > 110) and 16 non-calcified plaque lesions (HU < 110) were analyzed. The lesion-to-background ratio (LBR) and the relative change of LBR (ΔLBR) were measured on PET. RESULTS: Following PVC, LBR of the spheres (NEMA phantom) was within 10% of the original values. LBR of the thoracic lesions increased by 155% to 440% when the LP-PVC method was applied to the PET images. In patients, PVC increased the LBR in both calcified [mean = 78% (-8% to 227%)] and non-calcified plaques [mean = 41%, (-9%-104%)]. CONCLUSIONS: PVC helps to improve LBR of plaque-type lesions in both phantom studies and clinical patients. Better results were obtained when the PVC method was applied to images reconstructed with point spread function modeling.


Assuntos
Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Adulto , Idoso , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Radioisótopos de Flúor , Humanos , Masculino , Pessoa de Meia-Idade , Imagens de Fantasmas , Fluoreto de Sódio
10.
Pediatr Blood Cancer ; 65(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28771999

RESUMO

PURPOSE: About 10% of patients with neurofibromatosis type 1 (NF-1) develop malignant peripheral nerve sheath tumours (MPNST) mostly arising in plexiform neurofibroma (PN); 15% of MPNST arise in children and adolescents. 2-[18 F]fluoro-2-deoxy-d-glucose ([18 F]FDG)-PET (where PET is positron emission tomography) is a sensitive method in differentiating PN and MPNST in symptomatic patients with NF-1. This study assesses the value of [18 F]FDG-PET imaging in detecting malignant transformation in symptomatic and asymptomatic children with PN. METHODS: Forty-one patients with NF-1 and extensive PN underwent prospective [18 F]FDG imaging from 2003 to 2014. Thirty-two of the patients were asymptomatic. PET data, together with histological results and clinical course were re-evaluated retrospectively. Maximum standardised uptake values (SUVmax) and lesion-to-liver ratio were assessed. RESULTS: A total of 104 examinations were performed. Mean age at first PET was 13.5 years (2.6-22.6). Eight patients had at least one malignant lesion; four of these patients were asymptomatic. Two of four symptomatic patients died, while all patients with asymptomatic malignant lesions are alive. All malignant tumours could be identified by PET imaging in both symptomatic and asymptomatic patients. All lesions judged as benign by [18 F]FDG imaging and clinical judgment were either histologically benign if removed or remained clinically silent during follow-up. SUVmax of malignant and benign lesions overlapped, but no malignant lesion showed FDG uptake ≤3.15. Asymptomatic malignant lesions were detected with a sensitivity of 100%, a negative predictive value of 100% and a specificity of 45.1%. CONCLUSION: Malignant transformation of PN also occurs in asymptomatic children and adolescents. Detection of MPNST at early stages could increase the possibility of oncologically curative resections.


Assuntos
Fluordesoxiglucose F18/administração & dosagem , Neurofibroma Plexiforme/diagnóstico por imagem , Neurofibromatose 1/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Masculino
11.
Eur J Nucl Med Mol Imaging ; 43(8): 1503-12, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26816195

RESUMO

PURPOSE: PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. METHODS: The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. RESULTS: Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. CONCLUSION: SUVmax and TBRmax values are widely accepted reference parameters for estimation of the radioactivity of atherosclerotic plaques on PET/CT. However, due to a systematic underestimation of SUVmax and TBRmax with PET/MRI, the optimal cut-off values indicating the presence of inflamed plaque tissue need to be newly defined for PET/MRI.


Assuntos
Fluordesoxiglucose F18 , Imageamento por Ressonância Magnética , Placa Aterosclerótica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/diagnóstico por imagem , Estenose das Carótidas/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
12.
Eur J Radiol ; 177: 111552, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38861905

RESUMO

PURPOSE: The potential limitations of hepatic [18F]FDG-PET imaging for individuals with obesity and excessive liver fat (NAFLD) are being investigated. In this study, we aim to determine the reliability of standardized uptake values (SUVs) focusing on adjustment for liver fat content (LFC) derived from DIXON images and the effects of whole-body normalizations. METHODS: Lean and with obesity volunteers who underwent [18F]FDG-PET/MRI were reviewed retrospectively. DIXON fat images were used to determine LFC and for adjustment of SUVmean. The hepatic SUVs (mean, fat adjusted mean and max) were normalized to body weight, lean body mass and body surface area. Blood samples were analysed for glucose, serological liver enzymes and lipoproteins for further correlation of [18F]FDG uptake. RESULTS: Out of 11 volunteers with obesity (M:8, F:3, BMI:30-39 kg/m2), 9 confirmed the presence of NAFLD (>5.6 % fat). 22 age-matched lean volunteers (M:10, F:11, BMI:19-26 kg/m2) were used as control group. Both SUVmean, before and after adjustment to LFC, did not provide any difference between lean and with obesity groups under BW, LBM and BSA. SUVmax BW showed a difference between groups (p = 0.05). SUVs were independent of levels of GPT, GOT, gGT, insulin, HOMA-IR, triglycerides, cholesterol and LDL. Volunteers with low HDL were clustered with an increased hepatic [18F]FDG uptake. CONCLUSION: Our method for adjustment of hepatic [18F]FDG-PET with DIXON fat images allows to achieve accurate results for individuals with NAFLD and obesity. For homogenic results, raw SUVmean should be combined with adjustment for liver fat, appropriate normalization and consideration of HDL levels.

13.
EJNMMI Res ; 14(1): 46, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750398

RESUMO

BACKGROUND: Approaches targeting the sodium-glucose cotransporter (SGLT) could represent a promising future therapeutic strategy for numerous oncological and metabolic diseases. In this study, we evaluated the safety, biodistribution and radiation dosimetry of the glucose analogue positron emission tomography (PET) agent [18F] labeled alpha-methyl-4-deoxy-4-[18F]fluoro-D-glucopyranoside ([18F]Me4FDG) with high sodium-glucose cotransporter and low glucose transporter (GLUT) affinity. For this purpose, five healthy volunteers (1 man, 4 women) underwent multiple whole-body PET/computed tomography (CT) examinations starting with injection and up to 4 h after injection of averaged (2.4 ± 0.1) MBq/kg (range: 2.3-2.5 MBq/kg) administered activity. The PET/CT scans were conducted in 5 separate sessions, blood pressure and temperature were measured, and blood and urine samples were collected before the scans and one hour after injection to assess toxicity. Measurements of [18F]Me4FDG radioactivity in organs of interest were determined from the PET/CT scans at 5 time points. Internal dosimetry was performed on voxel level using a fast Monte Carlo approach. RESULTS: All studied volunteers could well tolerate the [18F]Me4FDG and no adverse event was reported. The calculated effective dose was (0.013 ± 0.003) mSv/MBq. The organs with the highest absorbed dose were the kidneys with 0.05 mSv/MBq per kidney. The brain showed almost no uptake. After 60 min, (12 ± 15) % of the administered dose was excreted into the bladder. CONCLUSION: Featuring an effective dose of only 0.013 ± 0.003 mSv/MBq and no occurrence of side effects, the glucose analogue [18F]Me4FDG seems to be a safe radio-tracer with a favorable biodistribution for PET imaging and also within several consecutive scans. TRIAL REGISTRATION NUMBER: NCT03557138, Registered 22 February 2017, https://ichgcp.net/clinical-trials-registry/NCT03557138 .

14.
Clin Transl Sci ; 17(5): e13804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700454

RESUMO

St. John's wort (SJW) extract, a herbal medicine with antidepressant effects, is a potent inducer of intestinal and/or hepatic cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp), which can cause clinically relevant drug interactions. It is currently not known whether SJW can also induce P-gp activity at the human blood-brain barrier (BBB), which may potentially lead to decreased brain exposure and efficacy of certain central nervous system (CNS)-targeted P-gp substrate drugs. In this study, we used a combination of positron emission tomography (PET) imaging and cocktail phenotyping to gain a comprehensive picture on the effect of SJW on central and peripheral P-gp and CYP activities. Before and after treatment of healthy volunteers (n = 10) with SJW extract with a high hyperforin content (3-6%) for 12-19 days (1800 mg/day), the activity of P-gp at the BBB was assessed by means of PET imaging with the P-gp substrate [11C]metoclopramide and the activity of peripheral P-gp and CYPs was assessed by administering a low-dose phenotyping cocktail (caffeine, omeprazole, dextromethorphan, and midazolam or fexofenadine). SJW significantly increased peripheral P-gp, CYP3A, and CYP2C19 activity. Conversely, no significant changes in the peripheral metabolism, brain distribution, and P-gp-mediated efflux of [11C]metoclopramide across the BBB were observed following the treatment with SJW extract. Our data suggest that SJW does not lead to significant P-gp induction at the human BBB despite its ability to induce peripheral P-gp and CYPs. Simultaneous intake of SJW with CNS-targeted P-gp substrate drugs is not expected to lead to P-gp-mediated drug interactions at the BBB.


Assuntos
Barreira Hematoencefálica , Hypericum , Floroglucinol , Floroglucinol/análogos & derivados , Extratos Vegetais , Tomografia por Emissão de Pósitrons , Terfenadina/análogos & derivados , Terpenos , Humanos , Hypericum/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Floroglucinol/farmacocinética , Floroglucinol/farmacologia , Floroglucinol/administração & dosagem , Extratos Vegetais/farmacologia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacocinética , Masculino , Adulto , Tomografia por Emissão de Pósitrons/métodos , Terpenos/farmacologia , Terpenos/farmacocinética , Terpenos/metabolismo , Feminino , Adulto Jovem , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Compostos Bicíclicos com Pontes/farmacologia , Compostos Bicíclicos com Pontes/farmacocinética , Compostos Bicíclicos com Pontes/administração & dosagem , Terfenadina/farmacocinética , Terfenadina/administração & dosagem , Terfenadina/farmacologia , Sistema Enzimático do Citocromo P-450/metabolismo , Voluntários Saudáveis
15.
EJNMMI Phys ; 10(1): 33, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243869

RESUMO

BACKGROUND: Total-body PET scanners with axial field of views (FOVs) longer than 1 m enable new applications to study multiple organs (e.g., the brain-gut-axis) simultaneously. As the spatial resolution and the associated partial volume effect (PVE) can vary significantly along the FOV, detailed knowledge of the contrast recovery coefficients (CRCs) is a prerequisite for image analysis and interpretation of quantitative results. The aim of this study was to determine the CRCs, as well as voxel noise, for multiple isotopes throughout the 1.06 m axial FOV of the Biograph Vision Quadra PET/CT system (Siemens Healthineers). MATERIALS AND METHODS: Cylindrical phantoms equipped with three different sphere sizes (inner diameters 7.86 mm, 28 and 37 mm) were utilized for the PVE evaluation. The 7.86 mm sphere was filled with F-18 (8:1 and 4:1), Ga-68 (8:1) and Zr-89 (8:1). The 28 mm and 37 mm spheres were filled with F-18 (8:1). Background concentration in the respective phantoms was of ~ 3 kBq/ml. The phantoms were measured at multiple positions in the FOV (axial: 0, 10, 20, 30, 40 and 50 cm, transaxial: 0, 10, 20 cm). The data were reconstructed with the standard clinical protocol, including PSF correction and TOF information with up to 10 iterations for maximum ring differences (MRDs) of 85 and 322; CRCs, as well as voxel noise levels, were determined for each position. RESULTS: F-18 CRCs (SBR 8:1 and 4:1) of the 7.86 mm sphere decreased up to 18% from the center FOV (cFOV) toward the transaxial edge and increased up to 17% toward the axial edge. Noise levels were below 15% for the default clinical reconstruction parameters. The larger spheres exhibited a similar pattern. Zr-89 revealed ~ 10% lower CRCs than F-18 but larger noise (9.1% (F-18), 19.1% (Zr-89); iteration 4, cFOV) for the default reconstruction. Zr-89 noise levels in the cFOV significantly decreased (~ 28%) when reconstructing the data with MRD322 compared with MRD85 along with a slight decrease in CRC values. Ga-68 exhibited the lowest CRCs for the three isotopes and noise characteristics comparable to those of F-18. CONCLUSIONS: Distinct differences in the PVE within the FOV were detected for clinically relevant isotopes F-18, Ga-68 and Zr-89, as well as for different sphere sizes. Depending on the positions inside the FOV, the sphere-to-background ratios, count statistics and isotope used, this can result in an up to 50% difference between CRCs. Hence, these changes in PVE can significantly affect the quantitative analysis of patient data. MRD322 resulted in slightly lower CRC values, especially in the center FOV, whereas the voxel noise significantly decreased compared with MRD85.

16.
Nuklearmedizin ; 62(3): 200-213, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807894

RESUMO

The aim of the study was to evaluate the effect of reduced injected [18F]FDG activity levels on the quantitative and diagnostic accuracy of PET images of patients with non-lesional epilepsy (NLE).Nine healthy volunteers and nine patients with NLE underwent 60-min dynamic list-mode (LM) scans on a fully-integrated PET/MRI system. Injected FDG activity levels were reduced virtually by randomly removing counts from the last 10-min of the LM data, so as to simulate the following activity levels: 50 %, 35 %, 20 %, and 10 % of the original activity. Four image reconstructions were evaluated: standard OSEM, OSEM with resolution recovery (PSF), the A-MAP, and the Asymmetrical Bowsher (AsymBowsher) algorithms. For the A-MAP algorithms, two weights were selected (low and high). Image contrast and noise levels were evaluated for all subjects while the lesion-to-background ratio (L/B) was only evaluated for patients. Patient images were scored by a Nuclear Medicine physician on a 5-point scale to assess clinical impression associated with the various reconstruction algorithms.The image contrast and L/B ratio characterizing all four reconstruction algorithms were similar, except for reconstructions based on only 10 % of total counts. Based on clinical impression, images with diagnostic quality can be achieved with as low as 35 % of the standard injected activity. The selection of algorithms utilizing an anatomical prior did not provide a significant advantage for clinical readings, despite a small improvement in L/B (< 5 %) using the A-MAP and AsymBowsher reconstruction algorithms.In patients with NLE who are undergoing [18F]FDG-PET/MR imaging, the injected [18F]FDG activity can be reduced to 35 % of the original dose levels without compromising.


Assuntos
Epilepsia , Fluordesoxiglucose F18 , Humanos , Redução da Medicação , Estudos de Viabilidade , Tomografia por Emissão de Pósitrons , Epilepsia/diagnóstico por imagem , Imageamento por Ressonância Magnética , Algoritmos
17.
Cancers (Basel) ; 15(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37345077

RESUMO

OBJECTIVES: Advanced MR imaging of brain tumors is still mainly based on qualitative imaging. PET imaging offers additive metabolic information, and MR fingerprinting (MRF) offers a novel approach to quantitative data acquisition. The purpose of this study was to evaluate the ability of MRF to predict tumor regions and grading in combination with PET. METHODS: Seventeen patients with histologically verified infiltrating gliomas and available amino-acid PET data were enrolled. ROIs for solid tumor parts (SPo), perifocal edema (ED1), and normal-appearing white matter (NAWM) were selected on conventional MRI sequences and aligned to the MRF and PET images. The predictability of gliomas by region and grading as well as intermodal correlations were assessed. RESULTS: For MRF, we calculated an overall predictability by region (SPo, ED1, and NAWM) for all of the MRF parameters of 76.5%, 47.1%, and 94.1%, respectively. The overall ability to distinguish low- from high-grade gliomas using MRF was 88.9% for LGG and 75% for HGG, with an accuracy of 82.4%, a ppV of 85.71%, and an npV of 80%. PET positivity was found in 13/17 patients for solid tumor parts, and in 3/17 patients for the edema region. However, there was no significant difference in region-specific MRF values between PET positive and PET negative patients. CONCLUSIONS: MRF and PET provide quantitative measurements of the tumor tissue characteristics of gliomas, with good predictability. Nonetheless, the results are dissimilar, reflecting the different underlying mechanisms of each method.

18.
Front Physiol ; 14: 1074052, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035658

RESUMO

Introduction: Dynamic positron emission tomography (PET) and the application of kinetic models can provide important quantitative information based on its temporal information. This however requires arterial blood sampling, which can be challenging to acquire. Nowadays, state-of-the-art PET/CT systems offer fully automated, whole-body (WB) kinetic modelling protocols using image-derived input functions (IDIF) to replace arterial blood sampling. Here, we compared the validity of an automatic WB kinetic model protocol to the reference standard arterial input function (AIF) for both clinical and research settings. Methods: Sixteen healthy participants underwent dynamic WB [18F]FDG scans using a continuous bed motion PET/CT system with simultaneous arterial blood sampling. Multiple processing pipelines that included automatic and manually generated IDIFs derived from the aorta and left ventricle, with and without motion correction were compared to the AIF. Subsequently generated quantitative images of glucose metabolism were compared to evaluate performance of the different input functions. Results: We observed moderate to high correlations between IDIFs and the AIF regarding area under the curve (r = 0.49-0.89) as well as for the cerebral metabolic rate of glucose (CMRGlu) (r = 0.68-0.95). Manual placing of IDIFs and motion correction further improved their similarity to the AIF. Discussion: In general, the automatic vendor protocol is a feasible approach for the quantification of CMRGlu for both, clinical and research settings where expertise or time is not available. However, we advise on a rigorous inspection of the placement of the volume of interest, the resulting IDIF, and the quantitative values to ensure valid interpretations. In protocols requiring longer scan times or where cohorts are prone to involuntary movement, manual IDIF definition with additional motion correction is recommended, as this has greater accuracy and reliability.

19.
Front Oncol ; 13: 986788, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816966

RESUMO

Introduction: Amino-acid positron emission tomography (PET) is a validated metabolic imaging approach for the diagnostic work-up of gliomas. This study aimed to evaluate sex-specific radiomic characteristics of L-[S-methyl-11Cmethionine (MET)-PET images of glioma patients in consideration of the prognostically relevant biomarker isocitrate dehydrogenase (IDH) mutation status. Methods: MET-PET of 35 astrocytic gliomas (13 females, mean age 41 ± 13 yrs. and 22 males, mean age 46 ± 17 yrs.) and known IDH mutation status were included. All patients underwent radiomic analysis following imaging biomarker standardization initiative (IBSI)-conform guidelines both from standardized uptake value (SUV) and tumor-to-background ratio (TBR) PET values. Aligned Monte Carlo (MC) 100-fold split was utilized for SUV and TBR dataset pairs for both sex and IDH-specific analysis. Borderline and outlier scores were calculated for both sex and IDH-specific MC folds. Feature ranking was performed by R-squared ranking and Mann-Whitney U-test together with Bonferroni correction. Correlation of SUV and TBR radiomics in relation to IDH mutational status in male and female patients were also investigated. Results: There were no significant features in either SUV or TBR radiomics to distinguish female and male patients. In contrast, intensity histogram coefficient of variation (ih.cov) and intensity skewness (stat.skew) were identified as significant to predict IDH +/-. In addition, IDH+ females had significant ih.cov deviation (0.031) and mean stat.skew (-0.327) differences compared to IDH+ male patients (0.068 and -0.123, respectively) with two-times higher standard deviations of the normal brain background MET uptake as well. Discussion: We demonstrated that female and male glioma patients have significantly different radiomic profiles in MET PET imaging data. Future IDH prediction models shall not be built on mixed female-male cohorts, but shall rely on sex-specific cohorts and radiomic imaging biomarkers.

20.
Phys Med ; 105: 102506, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36538846

RESUMO

This article presents the protocol on Quality Controls in PET/CT and PET/MRI published online in May 2022 by the European Federation of Organisations for Medical Physics (EFOMP), which was developed by the Working group for PET/CT and PET/MRI Quality Control (QC) protocol. The main objective of this protocol was to comprehensively provide simple and practical procedures that may be integrated into clinical practice to identify changes in the PET/CT/MRI system's performance and avoid short- and long-term quality deterioration. The protocol describes the quality control procedures on radionuclide calibrators, weighing scales, PET, CT and MRI systems using selected and measurable parameters that are directly linked to clinical images quality. It helps to detect problems before they can impact clinical studies in terms of safety, image quality, quantification accuracy and patient radiation dose. CT and MRI QCs are described only in the context of their use for PET (attenuation correction and anatomical localization) imaging. Detailed step-by-step instructions have been provided, limiting any misinterpretations or interpersonal variations as much as possible. This paper presents the main characteristics of the protocol illustrated together with a brief summary of the content of each chapter. A regular QC based on the proposed protocol would guarantee that PET/CT and PET/MRI systems operate under optimal conditions, resulting in the best performance for routine clinical tasks.


Assuntos
Imagem Multimodal , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Imagem Multimodal/métodos , Tomografia por Emissão de Pósitrons/métodos , Imageamento por Ressonância Magnética/métodos , Controle de Qualidade , Processamento de Imagem Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa