Assuntos
Peptídeos Semelhantes ao Glucagon , Hepatopatia Gordurosa não Alcoólica , Humanos , Alelos , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Obesidade/complicações , Polimorfismo de Nucleotídeo Único , Hepatopatia Gordurosa não Alcoólica/complicações , Predisposição Genética para Doença , GenótipoRESUMO
An elevated level of lipoprotein(a), or Lp(a), in the bloodstream has been causally linked to the development of atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Steady state levels of circulating lipoproteins are modulated by their rate of clearance, but the identity of the Lp(a) uptake receptor(s) has been controversial. In this study, we performed a genome-scale CRISPR screen to functionally interrogate all potential Lp(a) uptake regulators in HuH7 cells. Strikingly, the top positive and negative regulators of Lp(a) uptake in our screen were LDLR and MYLIP, encoding the LDL receptor and its ubiquitin ligase IDOL, respectively. We also found a significant correlation for other genes with established roles in LDLR regulation. No other gene products, including those previously proposed as Lp(a) receptors, exhibited a significant effect on Lp(a) uptake in our screen. We validated the functional influence of LDLR expression on HuH7 Lp(a) uptake, confirmed in vitro binding between the LDLR extracellular domain and purified Lp(a), and detected an association between loss-of-function LDLR variants and increased circulating Lp(a) levels in the UK Biobank cohort. Together, our findings support a central role for the LDL receptor in mediating Lp(a) uptake by hepatocytes.
RESUMO
Patients with inflammatory bowel disease (IBD) are at increased risk of Clostridioides difficile infection (CDI). Herein, we aimed to determine if genetic risk contributes to this observed association. We carried out a genome-wide association study (GWAS) analysis in the Michigan Genomics Initiative and the United Kingdom Biobank for CDI based on ICD codes and meta-analyzed these results with similar publicly accessible GWAS summary statistics from Finngen. Conditional and joint multi-SNP analyses were used to identify independent associations. Imputation of the human leukocyte antigen (HLA) region with fine mapping was used to try to identify causal HLA allele groups. Two-sample bidirectional Mendelian randomization (MR) was implemented to determine causal relationships between IBD and CDI. A total of 3,500 cases of CDI and 674,323 controls were meta-analyzed, revealing one genome-wide significant variant for CDI, HLA-C;LINC02571-rs3134745-C (P = 4.27E-08), which annotated to the major histocompatibility complex on chromosome 6. While fine mapping did not identify a statistically significant HLA allele group, there was a suggestive signal for HLA-B*35:01 (P = 4.74e-04). Using two-sample MR, genetically predicted IBD was associated with increased risk of CDI (MR Egger [odds ratio {OR} 1.16, 95% confidence interval {CI} 1.02-1.31]). Subset analysis revealed that risk was primarily driven by genetically predicted ulcerative colitis (MR Egger [OR 1.22, 95% CI 1.05-1.41]). These results highlight the importance of the host immune response in CDI pathogenesis, help explain the observed relationship between IBD and CDI, and open new avenues for targeted treatment of CDI in IBD.IMPORTANCEData from this paper (i) provide reproducible evidence that susceptibility CDI is genetically mediated, (ii) highlight genetic risk as a mechanism for the increased risk of CDI in patients with inflammatory bowel disease, and (iii) point toward anti-interleukin-23 therapy as a common therapeutic strategy.
RESUMO
Insulin resistance (IR) is a well-established risk factor for metabolic disease. The ratio of triglycerides to high-density lipoprotein cholesterol (TG:HDL-C) is a surrogate marker of IR. We conducted a genome-wide association study of the TG:HDL-C ratio in 402,398 Europeans within the UK Biobank. We identified 369 independent SNPs, of which 114 had a false discovery rate-adjusted P value < 0.05 in other genome-wide studies of IR making them high-confidence IR-associated loci. Seventy-two of these 114 loci have not been previously associated with IR. These 114 loci cluster into five groups upon phenome-wide analysis and are enriched for candidate genes important in insulin signaling, adipocyte physiology and protein metabolism. We created a polygenic-risk score from the high-confidence IR-associated loci using 51,550 European individuals in the Michigan Genomics Initiative. We identified associations with diabetes, hyperglyceridemia, hypertension, nonalcoholic fatty liver disease and ischemic heart disease. Collectively, this study provides insight into the genes, pathways, tissues and subtypes critical in IR.