Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 15(3): e1006402, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30875364

RESUMO

The PI3K/AKT signaling pathway plays a role in most cellular functions linked to cancer progression, including cell growth, proliferation, cell survival, tissue invasion and angiogenesis. It is generally recognized that hyperactive PI3K/AKT1 are oncogenic due to their boost to cell survival, cell cycle entry and growth-promoting metabolism. That said, the dynamics of PI3K and AKT1 during cell cycle progression are highly nonlinear. In addition to negative feedback that curtails their activity, protein expression of PI3K subunits has been shown to oscillate in dividing cells. The low-PI3K/low-AKT1 phase of these oscillations is required for cytokinesis, indicating that oncogenic PI3K may directly contribute to genome duplication. To explore this, we construct a Boolean model of growth factor signaling that can reproduce PI3K oscillations and link them to cell cycle progression and apoptosis. The resulting modular model reproduces hyperactive PI3K-driven cytokinesis failure and genome duplication and predicts the molecular drivers responsible for these failures by linking hyperactive PI3K to mis-regulation of Polo-like kinase 1 (Plk1) expression late in G2. To do this, our model captures the role of Plk1 in cell cycle progression and accurately reproduces multiple effects of its loss: G2 arrest, mitotic catastrophe, chromosome mis-segregation / aneuploidy due to premature anaphase, and cytokinesis failure leading to genome duplication, depending on the timing of Plk1 inhibition along the cell cycle. Finally, we offer testable predictions on the molecular drivers of PI3K oscillations, the timing of these oscillations with respect to division, and the role of altered Plk1 and FoxO activity in genome-level defects caused by hyperactive PI3K. Our model is an important starting point for the predictive modeling of cell fate decisions that include AKT1-driven senescence, as well as the non-intuitive effects of drugs that interfere with mitosis.


Assuntos
Apoptose , Ciclo Celular , Simulação por Computador , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Replicação do DNA , Ativação Enzimática , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fosfatidilinositol 3-Quinases/química , Origem de Replicação
2.
J Immunol ; 196(11): 4681-91, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27183587

RESUMO

Sepsis is a systemic inflammatory response to infections associated with organ failure that is the most frequent cause of death in hospitalized patients. Exaggerated endothelial activation, altered blood flow, vascular leakage, and other disturbances synergistically contribute to sepsis-induced organ failure. The underlying signaling events associated with endothelial proinflammatory activation are not well understood, yet they likely consist of molecular pathways that act in an endothelium-specific manner. We found that LPS, a critical factor in the pathogenesis of sepsis, is internalized by endothelial cells, leading to intracellular signaling without the need for priming as found recently in immune cells. By identifying a novel role for retinoic acid-inducible gene-I (RIG-I) as a central regulator of endothelial activation functioning independent of TLR4, we provide evidence that the current paradigm of TLR4 solely being responsible for LPS-mediated endothelial responses is incomplete. RIG-I, as well as the adaptor protein mitochondrial antiviral signaling protein, regulates NF-κB-mediated induction of adhesion molecules and proinflammatory cytokine expression in response to LPS. Our findings provide essential new insights into the proinflammatory signaling pathways in endothelial cells and suggest that combined endothelial-specific inhibition of RIG-I and TLR4 will provide protection from aberrant endothelial responses associated with sepsis.


Assuntos
Proteína DEAD-box 58/metabolismo , Células Endoteliais/imunologia , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Células Endoteliais/patologia , Inflamação/patologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Receptor 4 Toll-Like/imunologia
3.
iScience ; 26(4): 106321, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968076

RESUMO

The significance of biophysical modulators of the epithelial to mesenchymal transition (EMT) is demonstrated by experiments that document full EMT on stiff, nano-patterned substrates in the absence of biochemical induction. Yet, current models focus on biochemical triggers of EMT without addressing its mechanosensitive nature. Here, we built a Boolean model of EMT triggered by mechanosensing - mitogen crosstalk. Our model reproduces epithelial, hybrid E/M and mesenchymal phenotypes, the role of autocrine TGFß signaling in maintaining mesenchymal cells in the absence of external drivers, inhibition of proliferation by TGFß, and its apoptotic effects on soft ECM. We offer testable predictions on the density-dependence of partial EMT, its molecular drivers, and the conflict between mitosis and hybrid E/M stability. Our model opens the door to modeling the effects of the biomechanical environment on cancer cell stemness linked to the hybrid E/M state, as well as the mutually inhibitory crosstalk between EMT and senescence.

4.
Sci Rep ; 9(1): 16430, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712566

RESUMO

We perform logic-based network analysis on a model of the mammalian cell cycle. This model is composed of a Restriction Switch driving cell cycle commitment and a Phase Switch driving mitotic entry and exit. By generalizing the concept of stable motif, i.e., a self-sustaining positive feedback loop that maintains an associated state, we introduce the concept of a conditionally stable motif, the stability of which is contingent on external conditions. We show that the stable motifs of the Phase Switch are contingent on the state of three nodes through which it receives input from the rest of the network. Biologically, these conditions correspond to cell cycle checkpoints. Holding these nodes locked (akin to a checkpoint-free cell) transforms the Phase Switch into an autonomous oscillator that robustly toggles through the cell cycle phases G1, G2 and mitosis. The conditionally stable motifs of the Phase Switch Oscillator are organized into an ordered sequence, such that they serially stabilize each other but also cause their own destabilization. Along the way they channel the dynamics of the module onto a narrow path in state space, lending robustness to the oscillation. Self-destabilizing conditionally stable motifs suggest a general negative feedback mechanism leading to sustained oscillations.


Assuntos
Pontos de Checagem do Ciclo Celular , Ciclo Celular , Retroalimentação Fisiológica , Modelos Biológicos , Algoritmos , Humanos
5.
Dev Cell ; 29(2): 146-58, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24780735

RESUMO

Endothelial cells (ECs) exhibit dramatic plasticity of form at the single- and collective-cell level during new vessel growth, adult vascular homeostasis, and pathology. Understanding how, when, and why individual ECs coordinate decisions to change shape, in relation to the myriad of dynamic environmental signals, is key to understanding normal and pathological blood vessel behavior. However, this is a complex spatial and temporal problem. In this review we show that the multidisciplinary field of Adaptive Systems offers a refreshing perspective, common biological language, and straightforward toolkit that cell biologists can use to untangle the complexity of dynamic, morphogenetic systems.


Assuntos
Forma Celular/fisiologia , Células Endoteliais/citologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Células Endoteliais/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa