Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(32): 12650-12663, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37233196

RESUMO

A sole inorganic framework material [Li(H2O)4][{CuI(H2O)1.5} {CuII(H2O)3}2{WVI12O36(OH)6}]·N2·H2S·3H2O (1) consisting of a hydroxylated polyoxometalate (POM) anion, {WVI12O36(OH)6}6-, a mixed-valent Cu(II)- and Cu(I)-aqua cationic complex species, [{CuI(H2O)1.5}{CuII(H2O)3}2]5+, a Li(I)-aqua complex cation, and three solvent molecules, has been synthesized and structurally characterized. During its synthesis, the POM cluster anion gets functionalized with six hydroxyl groups, i.e., six WVI-OH groups per cluster unit. Moreover, structural and spectral analyses have shown the presence of H2S and N2 molecules in the concerned crystal lattice, formed from "sulfate-reducing ammonium oxidation (SRAO)". Compound 1 functions as a bifunctional electrocatalyst exhibiting oxygen evolution reaction (OER) by water oxidation and hydrogen evolution reaction (HER) by water reduction at the neutral pH. We could identify that the hydroxylated POM anion and copper-aqua complex cations are the functional sites for HER and OER, respectively. The overpotential, required to achieve a current density of 1 mA/cm2 in the case of HER (water reduction), is found to be 443 mV with a Faradaic efficiency of 84% and a turnover frequency of 4.66 s-1. In the case of OER (water oxidation), the overpotential needed to achieve a current density of 1 mA/cm2 is obtained to be 418 mV with a Faradaic efficiency of 80% and turnover frequency of 2.81 s-1. Diverse electrochemical controlled experiments have been performed to conclude that the title POM-based material functions as a true bifunctional catalyst for electrocatalytic HER as well as OER at the neutral pH without catalyst reconstruction.

2.
Inorg Chem ; 62(48): 19664-19676, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37967464

RESUMO

The uranyl ion (UO2)2+, a uranium nuclear waste, is one of the serious contaminants in our ecosystem because of its radioactivity, relevant human activities, and highly mobile and complex nature of living cells. In this article, we have reported the synthesis and structural characterization of an uranyl cation-incorporated polyoxometalate (POM) compound, K10[{K4(H2O)6}{UO2}2(α-PW9O34)2]·13H2O (1), in which the uranyl cations are complexed with an in situ generated [α-PW9O34]9- cluster. Single-crystal X-ray diffraction (SCXRD) analysis of compound 1 reveals that the uranyl-potassium complex cationic species, [{K4(H2O)6}{UO2}2]8+, is sandwiched by two [α-PW9O34]9- clusters resulting in a Dawson type of POM. Compound 1 was further characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis and infrared (IR), Raman, electronic absorption, and solid-state photoluminescence spectral studies. IR stretching vibrations at 895 and 856 cm-1 and the Raman signature peak at 792 cm-1 in the IR and Raman spectra of compound 1 primarily confirm the presence of a trans-[O═U═O]2+ ion. The solid-state photoluminescence spectrum of 1 exhibits a typical vibronic structure, resulting from symmetrical vibrations of [O═U═O]2+ bands, corresponding to the electronic transitions of S11 → S10 and S10 → S0υ (υ = 0-3). Interestingly, title compound 1 shows efficient electrocatalytic hydrogen evolution by water reduction with low Tafel slope values of 186.59 and 114.83 mV dec-1 at 1 mA cm-2 along with optimal Faradaic efficiency values of 82 and 87% at neutral pH and in acidic pH 3, respectively. Detailed electrochemical analyses reveal that the catalytic hydrogen evolution reaction (HER) activity mediated by compound 1 is associated with the UVI/UV redox couple of the POM. The microscopic as well as routine spectral analyses of postelectrode samples and controlled experiments have confirmed that compound 1 behaves like a true molecular electrocatalyst for the HER. To our knowledge, this is the first paradigm of a uranium-containing polyoxometalate that exhibits electrocatalytic water reduction to molecular H2. In a nutshell, an environmental toxin (a uranium-oxo compound) has been demonstrated to be utilized as an efficient electrocatalyst for hydrogen generation from water, a green approach of sustainable energy production.

3.
Inorg Chem ; 61(35): 13868-13882, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36006778

RESUMO

Two copper-based barrel-shaped polyoxometalates (POMs), namely, [{H3O}4{Na6(H2O)22}][{CuI (H2O)3}2{CuII (H2O)}3{B-α-BiIIIWVI9O33}2]·7H2O (NaCu-POM) and Li4[{NH4}2{H3O}3{Li(H2O)5}][{CuII(SH)}{(CuIICuI1.5)(B-α-BiIIIWVI9O33)}2]·9H2O (LiCu-POM) have been synthesized and structurally characterized. The single-crystal X-ray diffraction analyses of NaCu-POM and LiCu-POM reveal the presence of penta- and hexa-nuclear copper wheels per formula units, respectively; these copper wheels are sandwiched between two lacunary Keggin anions {B-α-BiIIIWVI9O33}9- (BiW9) to form the barrel-shaped title POM compounds. In both the compounds NaCu-POM and LiCu-POM, the mixed-valent copper centers are present in their respective penta- and hexa-nuclear copper wheels, established by X-ray photoelectron spectroscopy (XPS) as well as by bond valence sum (BVS) calculations. Compound LiCu-POM additionally shows the presence of a sulfhydryl ligand (SH-), coordinated to one of the copper centers of its {Cu6}-wheel, that is expected to be generated from the in situ reduction of sulfate anion present in the concerned reaction mixture (lithium-ion in ammonia solution may be the reducing agent). Interestingly, the title compounds, NaCu-POM and LiCu-POM exhibit an efficient electrocatalytic hydrogen evolution reaction (HER) by reducing water at neutral pH. Detailed electrochemical studies including controlled experiments indicate that the active sites for this electrocatalysis are the W(VI) centers of the title compounds, not the copper centers. However, a relevant tri-lacunary Keggin cluster anion {PVWVI9O33}7- (devoid of copper ion) does not show comparable HER as shown by the title compounds. The intra-cluster cooperative interactions of the mixed-valent copper centers (CuII/CuI) with the tungsten centers (W6+) make the overall system electrocatalytically active toward water reduction to molecular hydrogen at neutral pH. High Faradaic efficiencies (89 and 92%) and turnover frequencies (1.598 s-1 and 1.117 s-1) make the title compounds NaCu-POM and LiCu-POM efficient catalysts toward electrochemical water reduction to molecular hydrogen.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa