Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Planta Med ; 90(2): 96-110, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37846499

RESUMO

Oxystelma esculentum has been used as a folk medicine to treat jaundice, throat infections, and skin problems. In the current study, the bone fracture-healing properties of a flavonoid-enriched fraction (Oxy50-60F) of O. esculentum were investigated in Swiss mice using a drill-hole injury model. Oxy50-60F (1 mg/kg/day, 5 mg/kg/day, and 10 mg/kg/day) was administered orally (from the next day) after a 0.6 mm drill-hole injury in mice femur mid-diaphysis for 7 days and 14 days. Parathyroid hormone (40 µg/kg; 5 times/week) was given subcutaneously as the positive control. Confocal imaging for bone regeneration, micro-architecture of femur bones, ex vivo mineralization, hematoxyline and eosin staining, measurement of reactive oxygen species, and gene expression of osteogenic and anti-inflammatory genes were studied. Quercetin, kaempferol, and isorhamnetin glycosides were identified in the active fraction using mass spectrometry techniques. Our results confirm that Oxy50-60F treatment promotes fracture healing and callus formation at drill-hole sites and stimulates osteogenic and anti-inflammatory genes. Oxy50-60F administration to fractured mice exhibited significantly better micro-CT parameters in a dose-dependent manner and promoted nodule mineralization at days 7 and 14 post-injury. Oxy50-60F also prevents ROS generation by increasing expression of the SOD2 enzyme. Overall, this study reveals that Oxy50-60F has bone regeneration potential in a cortical bone defect model, which supports its use in delayed-union and non-union fracture cases.


Assuntos
Consolidação da Fratura , Fraturas Ósseas , Camundongos , Animais , Flavonoides/farmacologia , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Espectrometria de Massas em Tandem , Fraturas Ósseas/tratamento farmacológico , Anti-Inflamatórios
2.
Rapid Commun Mass Spectrom ; 37(3): e9440, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36411261

RESUMO

RATIONALE: Cajanus scarabaeoides, belonging to the Fabaceae family, is an underutilized herb and traditionally used to treat several ailments. However, it is not well explored phytochemically. Therefore, mass spectrometry (MS)-based phytochemical analysis was carried out to investigate the bioactive ingredients of the herb. METHODS: A ultra-performance liquid chromatography (UPLC) coupled to photodiode array detection (PDA) and electrospray ionization (ESI) tandem mass spectrometry (UPLC-PDA-ESI-MS/MS) system was used for the qualitative and quantitative analysis of phytochemicals. The chromatographic separation was achieved on the Acquity BEH C18 column (150 × 2.1 mm, 1.7 µm) using a gradient system consisting of three solvents, acetonitrile, methanol, and 0.1% formic acid, used at a flow rate of 0.300 ml/min. RESULTS: Sixteen bioactive ingredients (gallic acid, gallocatechin, epigallocatechin, catechin, procyanidin dimer, epicatechin, procyanidin trimer, isoorientin, orientin, vitexin, isovitexin, quercetin-mono-O-glycoside, isoquercitrin, luteolin-7-O-glucoside, quercetin, and luteolin) were identified and structurally characterized. Consequently, 12 compounds were reported for the first time from C. scarabaeoides, and 13 were quantitatively determined in different seasons. Isoorientin (10.2-7.1% w/w) and orientin (5.78-5.17% w/w) were the most abundant constituents in the dry weight of plant material, followed by vitexin and isovitexin in the rainy season. CONCLUSIONS: The phytochemical investigation has revealed that C. scarabaeoides could be a potential alternate source of bioactive ingredients, namely, isoorientin, orientin, vitexin, and isovitexin, contributing to further exploration of its biological activity. In addition, analytical methods can be used for the rapid identification and quantification of bioactive ingredients in C. scarabaeoides.


Assuntos
Cajanus , Proantocianidinas , Espectrometria de Massas em Tandem/métodos , Estações do Ano , Cromatografia Líquida de Alta Pressão/métodos , Quercetina , Cromatografia Líquida
3.
Rapid Commun Mass Spectrom ; 37(20): e9615, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37706431

RESUMO

RATIONALE: Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS: In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS: HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS: Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.


Assuntos
COVID-19 , Hesperidina , Humanos , Cromatografia Líquida , Tratamento Farmacológico da COVID-19 , Espectrometria de Massas em Tandem
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835260

RESUMO

Diabetes is an age-related chronic health condition and a major public health concern. Diabetes is one of the significant causes of morbidity and mortality and a major contributing factor to dementia. Recent research reveals that Hispanic Americans are at an increased risk of chronic conditions such as diabetes, dementia, and obesity. Recent research also revealed that diabetes develops at least ten years earlier in Hispanics and Latinos than in neighboring non-Hispanic whites. Furthermore, the management of diabetes and providing necessary/timely support is a challenging task for healthcare professionals. Caregiver support is an emerging area of research for people with diabetes, mainly family caregiver support work for Hispanic and Native Americans. Our article discusses several aspects of diabetes, factors associated with diabetes among Hispanics, its management, and how caregivers can support individuals with diabetes.


Assuntos
Demência , Diabetes Mellitus , Deficiência Intelectual , Humanos , Adulto , Cuidadores , Vida Independente , Fatores de Risco , Hispânico ou Latino
5.
Phytochem Anal ; 33(5): 746-753, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35355343

RESUMO

INTRODUCTION: Nerium oleander is an eminent source of structurally diverse cardiac glycosides (CGs), plays a prominent role in the treatment of heart failure, and inhibits the proliferation of cancer cell lines. CGs exert their cardiotonic action by binding to the extracellularly exposed recognition sites on Na+ /K+ -ATPase, an integral membrane protein that establishes the electrochemical gradient of Na+ and K+ ions across the plasma membrane. OBJECTIVE: We aimed to quantitatively determine CGs and their seasonal variation in leaf and stem samples of N. oleander utilizing UHPLC-ESI-MS/MS techniques. METHODS: The UHPLC-ESI-MS/MS analytical method was developed utilizing multiple reaction monitoring (MRM) mode. The Waters BEH C18 (150 mm × 2.1 mm, 1.7 µm) column was used with a 22-min linear gradient consisting of acetonitrile and 5 mM ammonium acetate buffer. RESULTS: In total 21 CGs were quantitatively determined in the seasonal leaf and stem samples of N. oleander along with the absolute quantitation of the three chemical markers odoroside H (244.8 µg/g), odoroside A (231.4 µg/g), and oleandrin (703.9 µg/g). The season-specific accumulation of chemical markers was observed in the order of predominance odoroside A (summer season, stem), odoroside H (winter season, stem), and oleandrin (rainy season, leaf). Besides this, the remaining 18 CGs were relatively quantified in the same samples. CONCLUSION: The developed method is simple and reliable and can be used for the identification and quantification of multiple CGs in N. oleander.


Assuntos
Glicosídeos Cardíacos , Nerium , Glicosídeos Cardíacos/análise , Cromatografia Líquida de Alta Pressão/métodos , Estações do Ano , Espectrometria de Massas em Tandem
6.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361631

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aß) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.


Assuntos
Doença de Alzheimer , Doença de Pick , Tauopatias , Humanos , Idoso , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Tauopatias/metabolismo , Proteínas tau/metabolismo , Doença de Pick/metabolismo , Emaranhados Neurofibrilares/metabolismo
7.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361714

RESUMO

Alzheimer's disease (AD), is a progressive neurodegenerative disease that affects behavior, thinking, learning, and memory in elderly individuals. AD occurs in two forms, early onset familial and late-onset sporadic; genetic mutations in PS1, PS2, and APP genes cause early onset familial AD, and a combination of lifestyle, environment and genetic factors causes the late-onset sporadic form of the disease. However, accelerated disease progression is noticed in patients with familial AD. Disease-causing pathological changes are synaptic damage, and mitochondrial structural and functional changes, in addition to increased production and accumulation of phosphorylated tau (p-tau), and amyloid beta (Aß) in the affected brain regions in AD patients. Aß is a peptide derived from amyloid precursor protein (APP) by proteolytic cleavage of beta and gamma secretases. APP is a glycoprotein that plays a significant role in maintaining neuronal homeostasis like signaling, neuronal development, and intracellular transport. Aß is reported to have both protective and toxic effects in neurons. The purpose of our article is to summarize recent developments of Aß and its association with synapses, mitochondria, microglia, astrocytes, and its interaction with p-tau. Our article also covers the therapeutic strategies that reduce Aß toxicities in disease progression and discusses the reasons for the failures of Aß therapeutics.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Progressão da Doença
8.
Eur J Mass Spectrom (Chichester) ; 30(2): 116-124, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38321758

RESUMO

Cladia aggregate (SW) Nyl is a lichenized fungi in the family Cladoniaceae producing characteristic secondary metabolites of interest. There are only limited chemical studies relating to the genus Cladia. A chemical study of the lichen C. aggregata was conducted and their chemical constituents were elucidated by ultra-performance liquid chromatography-electrospray ionization/triple-quadrupole tandem-mass spectrometry analysis. It is the first time report of structure analysis of its metabolite by liquid chromatography-mass spectrometry/mass spectrometry. The molecular masses for 20 compounds were detected from different fractions. Seven compounds were elucidated with mass spectrometry/mass spectrometry fragmentation pattern analysis. Barbatic acid (12) was identified as the major compound being common to all fractions. The identified compounds belong to depsides (2, 11, 12 and 20), dibenzofurans (13, 18) and sugar derivatives (1) which are usually distributed in lichens.


Assuntos
Ascomicetos , Líquens , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Compostos Orgânicos , Depsídeos , Açúcares
9.
Ageing Res Rev ; 93: 102178, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154509

RESUMO

Alzheimer's disease (AD) and Alzheimer's disease-related dementias (ADRD) are the primary public health concerns in the United States and around the globe. AD/ADRD are irreversible mental illnesses that primarily impair memory and thought processes and may lead to cognitive decline among older individuals. The prevalence of AD/ADRD is higher in Native Americans, followed by African Americans and Hispanics. Increasing evidence suggests that Hispanics are the fastest-growing ethnic population in the USA and worldwide. Hispanics develop clinical symptoms of AD/ADRD and other comorbidities nearly seven years earlier than non-Hispanic whites. The consequences of AD/ADRD can be challenging for patients, their families, and caregivers. There is a significant increase in the burden of illness, primarily affecting Hispanic/Latino families. This is partly due to their strong sense of duty towards family, and it is exacerbated by the inadequacy of healthcare and community services that are culturally and linguistically suitable and responsive to their needs. With an increasing age population, low socioeconomic status, low education, high genetic predisposition to age-related conditions, unique cultural habits, and social behaviors, Hispanic Americans face a higher risk of AD/ADRD than other racial/ethnic groups. Our article highlights the status of Hispanic older adults with AD/ADRD. We also discussed the intervention to improve the quality of life in Hispanic caregivers.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Idoso , Doença de Alzheimer/epidemiologia , Cuidadores/psicologia , Qualidade de Vida , Hispânico ou Latino
10.
Neural Regen Res ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38902281

RESUMO

ABSTRACT: The process of neurite outgrowth and branching is a crucial aspect of neuronal development and regeneration. Axons and dendrites, sometimes referred to as neurites, are extensions of a neuron's cellular body that are used to start networks. Here we explored the effects of diethyl (3,4-dihydroxyphenethylamino)(quinolin-4-yl) methylphosphonate (DDQ) on neurite developmental features in HT22 neuronal cells. In this work, we examined the protective effects of DDQ on neuronal processes and synaptic outgrowth in differentiated HT22 cells expressing mutant Tau (mTau) cDNA. To investigate DDQ characteristics, cell viability, biochemical, molecular, western blotting, and immunocytochemistry were used. Neurite outgrowth is evaluated through the segmentation and measurement of neural processes. These neural processes can be seen and measured with a fluorescence microscope by manually tracing and measuring the length of the neurite growth. These neuronal processes can be observed and quantified with a fluorescent microscope by manually tracing and measuring the length of the neuronal HT22. DDQ-treated mTau-HT22 cells (HT22 cells transfected with cDNA mutant Tau) were seen to display increased levels of synaptophysin, MAP-2, and ß-tubulin. Additionally, we confirmed and noted reduced levels of both total and p-Tau, as well as elevated levels of microtubule-associated protein 2, ß-tubulin, synaptophysin, vesicular acetylcholine transporter, and the mitochondrial biogenesis protein-peroxisome proliferator-activated receptor-gamma coactivator-1α. In mTau-expressed HT22 neurons, we observed DDQ enhanced the neurite characteristics and improved neurite development through increased synaptic outgrowth. Our findings conclude that mTau-HT22 (Alzheimer's disease) cells treated with DDQ have functional neurite developmental characteristics. The key finding is that, in mTau-HT22 cells, DDQ preserves neuronal structure and may even enhance nerve development function with mTau inhibition.

11.
Mitochondrion ; 75: 101843, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244850

RESUMO

The purpose of our study is to develop age-related phosphorylated tau (p-tau) inhibitors, for Alzheimer's disease (AD). There are wide-ranging therapeutic molecules available in the market and tested for age-related p-tau inhibition to enhance phosphatase activity and microtubule stability in AD neurons. Until now there are no such small molecules claimed to show promising results to delay the disease process of AD. However, a recently developed molecule, DDQ, has been shown to reduce abnormal protein-protein interactions and protect neurons from mutant protein-induced toxicities in the disease process. In addition, DDQ reduced age- and Aß-induced oxidative stress, mitochondrial dysfunction, and synaptic toxicity. To date, there are no published reports on the p-tau interaction of DDQ and Sirt3 upregulation with CREB-mediated mitophagy activation in AD neurons. In the current study, HT22 cells were transfected with mutant Tau (mTau) cDNA and treated with the novel molecule DDQ. Cell survival, immunoblotting, and immunofluorescence analysis were conducted to assess cell viability and synaptic and mitophagy proteins in treated and untreated cell groups. As expected, we found cell survival was decreased in mTau-HT22 cells when compared with control HT22 cells. However, cell survival was increased in DDQ-treated mTau-HT22 cells when compared with mTau HT22 cells. P-tau and total tau proteins were significantly reduced in DDQ-treated mTau-HT22 cells, and MAP2 levels were increased. Anti-aging proteins like Sirt3, and CREB levels were increased in DDQ-treated HT22 cells and also in mTau-HT22 cells treated DDQ. Mitophagy proteins were decreased in mTau-HT22 cells and these were increased in DDQ-treated mTau-HT22 cells. These observations strongly suggest that DDQ has anti-p-tau and anti-aging properties, via Sirt3 overexpression and increased mitophagy proteins. Our study findings may have implications for healthy aging to the development of p-tau targeted therapeutics in AD and tauopathies.


Assuntos
Doença de Alzheimer , Sirtuína 3 , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Mitofagia , Sirtuína 3/metabolismo , Doença de Alzheimer/genética , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo
12.
Aging Dis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607731

RESUMO

The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) is implicated mainly in Alzheimer's disease (AD) and reported to be responsible for several processes and roles in the human body, such as regulating sleep, food intake, sexual behavior, anxiety, and drug abuse. It is synthesized from the amino acid tryptophan. Serotonin also functions as a signal between neurons to mature, survive, and differentiate. It plays a crucial role in neuronal plasticity, including cell migration and cell contact formation. Various psychiatric disorders, such as depression, schizophrenia, autism, and Alzheimer's disease, have been linked to an increase in serotonin-dependent signaling during the development of the nervous system. Recent studies have found 5-HT and other monoamines embedded in the nuclei of various cells, including immune cells, the peritoneal mast, and the adrenal medulla. Evidence suggests these monoamines to be involved in widespread intracellular regulation by posttranslational modifications (PTMs) of proteins. Serotonylation is the calcium-dependent process in which 5-HT forms a long-lasting covalent bond to small cytoplasmic G-proteins by endogenous transglutaminase 2 (TGM2). Serotonylation plays a role in various biological processes. The purpose of our article is to summarize historical developments and recent advances in serotonin research and serotonylation in depression, aging, AD, and other age-related neurological diseases. We also discussed several of the latest developments with Serotonin, including biological functions, pathophysiological implications and therapeutic strategies to treat patients with depression, dementia, and other age-related conditions.

13.
JCI Insight ; 9(5)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38271085

RESUMO

High-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy in the United States. Late diagnosis and the emergence of chemoresistance have prompted studies into how the tumor microenvironment, and more recently tumor innervation, may be leveraged for HGSC prevention and interception. In addition to stess-induced sources, concentrations of the sympathetic neurotransmitter norepinephrine (NE) in the ovary increase during ovulation and after menopause. Importantly, NE exacerbates advanced HGSC progression. However, little is known about the role of NE in early disease pathogenesis. Here, we investigated the role of NE in instigating anchorage independence and micrometastasis of preneoplastic lesions from the fallopian tube epithelium (FTE) to the ovary, an essential step in HGSC onset. We found that in the presence of NE, FTE cell lines were able to survive in ultra-low-attachment (ULA) culture in a ß-adrenergic receptor-dependent (ß-AR-dependent) manner. Importantly, spheroid formation and cell viability conferred by treatment with physiological sources of NE were abrogated using the ß-AR blocker propranolol. We have also identified that NE-mediated anoikis resistance may be attributable to downregulation of colony-stimulating factor 2. These findings provide mechanistic insight and identify targets that may be regulated by ovary-derived NE in early HGSC.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Anoikis , Norepinefrina/farmacologia , Norepinefrina/metabolismo , Microambiente Tumoral
14.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765585

RESUMO

Cancer is a public health concern and causes more than 8 million deaths annually. Cancer triggers include population growth, aging, and variations in the prevalence and distribution of the critical risk factors for cancer. Multiple hallmarks are involved in cancer, including cell proliferation, evading growth suppressors, activating invasion and metastasis, resisting cell death, enabling replicative immortality, reprogramming energy metabolism, and evading immune destruction. Both cancer and dementia are age-related and potentially lethal, impacting survival. With increasing aging populations, cancer and dementia cause a burden on patients, family members, the health care system, and informal/formal caregivers. In the current article, we highlight cancer prevalence with a focus on different ethnic groups, ages, and genders. Our article covers risk factors and genetic causes associated with cancer and types of cancers and comorbidities. We extensively cover the impact of cancer in Hispanics in comparison to that in other ethnic groups. We also discuss the status of caregivers with cancer patients and urgent needs from the state and federal support for caregivers.

15.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166738, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37142132

RESUMO

The steroidogenic acute regulatory (StAR) protein principally mediates steroid hormone biosynthesis by governing the transport of intramitochondrial cholesterol. Neurosteroids progressively decrease during aging, the key risk factor for Alzheimer's disease (AD), which is triggered by brain-region specific accumulation of amyloid beta (Aß) precursor protein (APP), a key pathological factor. We demonstrate that hippocampal neuronal cells overexpressing wild-type (WtAPP) and mutant APP (mAPP) plasmids, conditions mimetic to AD, resulted in decreases in StAR mRNA, free cholesterol, and pregnenolone levels. The magnitude of suppression of the steroidogenic response was more pronounced with mAPP than that of WtAPP. While mAPP-waned assorted anomalies correlate to AD pathology, deterioration of APP/Aß laden StAR expression and neurosteroid biosynthesis was enhanced by retinoid signaling. An abundance of mitochondrially targeted StAR expression partially restored APP/Aß accumulated diverse neurodegenerative vulnerabilities. Immunofluorescence analyses revealed that overexpression of StAR diminishes mAPP provoked Aß aggregation. Co-expression of StAR and mAPP in hippocampal neurons substantially reversed the declines in mAPP mediated cell survival, mitochondrial oxygen consumption rate, and ATP production. Concurrently, induction of mAPP induced Aß loading showed an increase in cholesterol esters, but decrease in free cholesterol, concomitant with pregnenolone biosynthesis, events that were inversely regulated by StAR. Moreover, retinoid signaling was found to augment cholesterol content for facilitating neurosteroid biosynthesis in an AD mimetic condition. These findings provide novel insights into the molecular events by which StAR acts to protect mAPP-induced hippocampal neurotoxicity, mitochondrial dysfunction, and neurosteroidogenesis, and these measures are fundamental for ameliorating and/or delaying dementia in individuals with AD.


Assuntos
Doença de Alzheimer , Neuroesteroides , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Colesterol
16.
J Alzheimers Dis Rep ; 7(1): 557-574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313490

RESUMO

Alzheimer's disease (AD) and Alzheimer's disease-related disorders (ADRD) are late-onset, age-related progressive neurodegenerative disorders, characterized by memory loss and multiple cognitive impairments. Current research indicates that Hispanic Americans are at an increased risk for AD/ADRD and other chronic conditions such as diabetes, obesity, hypertension, and kidney disease, and given their rapid growth in numbers, this may contribute to a greater incidence of these disorders. This is particularly true for the state of Texas, where Hispanics are the largest group of ethnic minorities. Currently, AD/ADRD patients are taken care by family caregivers, which puts a tremendous burden on family caregivers who are usually older themselves. The management of disease and providing necessary/timely support for patients with AD/ADRD is a challenging task. Family caregivers support these individuals in completing basic physical needs, maintaining a safe living environment, and providing necessary planning for healthcare needs and end-of-life decisions for the remainder of the patient's lifetime. Family caregivers are mostly over 50 years of age and provide all-day care for individuals with AD/ADRD, while also managing their health. This takes a significant toll on the caregiver's own physiological, mental, behavioral, and social health, in addition to low economic status. The purpose of our article is to assess the status of Hispanic caregivers. We also focused on effective interventions for family caregivers of persons with AD/ADRD involving both educational and psychotherapeutic components, and a group format further enhances effectiveness. Our article discusses innovative methods and validations to support Hispanic family caregivers in rural West Texas.

17.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345659

RESUMO

Epigenetic aberrations, including posttranslational modifications of core histones, are major contributors to cancer. Here, we define the status of histone H2B monoubiquitylation (H2Bub1) in clear cell ovarian carcinoma (CCOC), low-grade serous carcinoma, and endometrioid carcinomas. We report that clear cell carcinomas exhibited profound loss, with nearly all cases showing low or negative H2Bub1 expression. Moreover, we found that H2Bub1 loss occurred in endometriosis and atypical endometriosis, which are established precursors to CCOCs. To examine whether dysregulation of a specific E3 ligase contributes to the loss of H2Bub1, we explored expression of ring finger protein 40 (RNF40), ARID1A, and UBR7 in the same case cohort. Loss of RNF40 was significantly and profoundly correlated with loss of H2Bub1. Using genome-wide DNA methylation profiles of 230 patients with CCOC, we identified hypermethylation of RNF40 in CCOC as a likely mechanism underlying the loss of H2Bub1. Finally, we demonstrated that H2Bub1 depletion promoted cell proliferation and clonogenicity in an endometriosis cell line. Collectively, our results indicate that H2Bub1 plays a tumor-suppressive role in CCOCs and that its loss contributes to disease progression.


Assuntos
Carcinoma , Endometriose , Neoplasias Ovarianas , Neoplasias Peritoneais , Feminino , Humanos , Endometriose/genética , Histonas/genética , Neoplasias Ovarianas/genética
18.
Life Sci ; 297: 120471, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35278423

RESUMO

Natural killer (NK) cells are involved in providing immunity against autoimmune diseases and perpetuation of a successful pregnancy in addition to protecting us from viral infections and providing tumor immunity. NK cells are present in various organs such as spleen, blood, lymph nodes, skin, liver and uterus and differential expression of transcription factors in divergent subsets of NK cells lead to differences in their cytotoxicity and cytokine profile. Tissue-specific expression and regulation of the TFs involved, has a profound effect on the cytokine profile and surface markers on NK cells, thus impacting NK cell function. Nfil-3, Id-2, Ets-1, GATA-3, and Eomes are TFs varying in abundance in peripheral NK (pNK) and uterine NK cells (uNK), which further highlights the functional variations in the two subsets of NK cells. GATA-3 mediated regulation of IFN-γ production, NK cell maturation, protection against pathogens, and regulation of expression of inhibitory NK cell receptor (NKG2A), exemplifies a potential mechanism for immune-modulation, involving NK cells. This review highlights the differences in the regulation of TFs in pNK and uNK cells, which can be crucial for development of novel immune-therapeutics.


Assuntos
Células Matadoras Naturais , Fatores de Transcrição , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez , Baço/metabolismo , Fatores de Transcrição/metabolismo , Útero/metabolismo
19.
Antioxidants (Basel) ; 11(12)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36552610

RESUMO

With increasing aging, dementia is a growing public health concern globally. Patients with dementia have multiple psychological and behavioral changes, including depression, anxiety, inappropriate behavior, paranoia, agitation, and hallucinations. The major types of dementia are Alzheimer's disease (AD), vascular dementia (VCID), Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia (MiAD). Among these, AD is the most common form of dementia in the elderly population. In the last three decades, tremendous progress has been made in understanding AD's biology and disease progression, particularly its molecular basis, biomarker development, and drug discovery. Multiple cellular changes have been implicated in the progression of AD, including amyloid beta, phosphorylated tau, synaptic damage, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others; based on these changes, therapeutic strategies have been developed, which are currently being tested in animal models and human clinical trials. The purpose of our article is to highlight recent therapeutic strategies' developments, critically discuss current strategies' failures, and propose new strategies to combat this devasting mental illness.

20.
Sci Signal ; 15(728): eabm2496, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380877

RESUMO

PAX8 is a master transcription factor that is essential during embryogenesis and promotes neoplastic growth. It is expressed by the secretory cells lining the female reproductive tract, and its deletion during development results in atresia of reproductive tract organs. Nearly all ovarian carcinomas express PAX8, and its knockdown results in apoptosis of ovarian cancer cells. To explore the role of PAX8 in these tissues, we purified the PAX8 protein complex from nonmalignant fallopian tube cells and high-grade serous ovarian carcinoma cell lines. We found that PAX8 was a member of a large chromatin remodeling complex and preferentially interacted with SOX17, another developmental transcription factor. Depleting either PAX8 or SOX17 from cancer cells altered the expression of factors involved in angiogenesis and functionally disrupted tubule and capillary formation in cell culture and mouse models. PAX8 and SOX17 in ovarian cancer cells promoted the secretion of angiogenic factors by suppressing the expression of SERPINE1, which encodes a proteinase inhibitor with antiangiogenic effects. The findings reveal a non-cell-autonomous function of these transcription factors in regulating angiogenesis in ovarian cancer.


Assuntos
Neoplasias Ovarianas , Fator de Transcrição PAX8 , Fatores de Transcrição SOXF , Fatores de Transcrição , Animais , Tubas Uterinas/metabolismo , Tubas Uterinas/patologia , Feminino , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Camundongos , Gradação de Tumores , Neoplasias Ovarianas/metabolismo , Fator de Transcrição PAX8/genética , Fator de Transcrição PAX8/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa