Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555499

RESUMO

Acute respiratory distress syndrome (ARDS) and sepsis are risk factors contributing to mortality in patients with pneumonia. In ARDS, also termed acute lung injury (ALI), pulmonary immune responses lead to excessive pro-inflammatory cytokine release and aberrant alveolar neutrophil infiltration. Systemic spread of cytokines is associated with systemic complications including sepsis, multi-organ failure, and death. Thus, dampening pro-inflammatory cytokine release is a viable strategy to improve outcome. Activation of cannabinoid type II receptor (CB2) has been shown to reduce cytokine release in various in vivo and in vitro studies. Herein, we investigated the effect of HU-308, a specific CB2 agonist, on systemic and pulmonary inflammation in a model of pneumonia-induced ALI. C57Bl/6 mice received intranasal endotoxin or saline, followed by intravenous HU-308, dexamethasone, or vehicle. ALI was scored by histology and plasma levels of select inflammatory mediators were assessed by Luminex assay. Intravital microscopy (IVM) was performed to assess leukocyte adhesion and capillary perfusion in intestinal and pulmonary microcirculation. HU-308 and dexamethasone attenuated LPS-induced cytokine release and intestinal microcirculatory impairment. HU-308 modestly reduced ALI score, while dexamethasone abolished it. These results suggest administration of HU-308 can reduce systemic inflammation without suppressing pulmonary immune response in pneumonia-induced ALI and systemic inflammation.


Assuntos
Lesão Pulmonar Aguda , Canabinoides , Pneumonia , Síndrome do Desconforto Respiratório , Sepse , Camundongos , Animais , Endotoxinas/efeitos adversos , Microcirculação , Pneumonia/tratamento farmacológico , Pneumonia/etiologia , Pneumonia/patologia , Inflamação/patologia , Pulmão/patologia , Canabinoides/efeitos adversos , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/induzido quimicamente , Citocinas , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Lipopolissacarídeos/toxicidade , Dexametasona/efeitos adversos , Camundongos Endogâmicos C57BL
2.
Biomedicines ; 12(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38790962

RESUMO

Inflammatory bowel disease (IBD) is a group of chronic disorders characterized by pain, ulceration, and the inflammation of the gastrointestinal tract (GIT) and categorized into two major subtypes: ulcerative colitis (UC) and Crohn's disease. The inflammation in UC is typically restricted to the mucosal surface, beginning in the rectum and extending through the entire colon. UC patients typically show increased levels of pro-inflammatory cytokines, leading to intestinal epithelial apoptosis and mucosal inflammation, which impair barrier integrity. Chronic inflammation is associated with the rapid recruitment and inappropriate retention of leukocytes at the site of inflammation, further amplifying the inflammation. While UC can be managed using a number of treatments, these drugs are expensive and cause unwanted side effects. Therefore, a safe and effective treatment for UC patients is needed. Palmitoylethanolamide (PEA) is an endogenous fatty acid amide and an analog of the endocannabinoid anandamine. PEA administration has been found to normalize intestinal GIT motility and reduce injury in rodents and humans. In the current study, we examined the efficacy of PEA encapsulated in phytosomes following oral administration in experimental ulcerative colitis. Here, we showed that PEA at a human-equivalent dose of 123 mg/kg (OD or BID) attenuated DSS-induced experimental colitis as represented by the reduction in clinical signs of colitis, reduction in gross mucosal injury, and suppression of leukocyte recruitment at inflamed venules. These findings add to the growing body of data demonstrating the beneficial effects of PEA to control the acute phase of intestinal inflammation occurring during UC.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa