RESUMO
We envisioned a new approach for achieving triplet-triplet annihilation-assisted photon upconversion based on the rational design of a heavy-atom-free, all-organic and photoactivatable triplet-triplet synergistic multichromophoric molecular assembly. This single molecular architecture is easily built by covalently anchoring triplet-annihilator units (pyrenes) to a triplet-photosensitizer moiety (BODIPY), to improve the effectiveness and probability of the required triplet-triplet energy transfer and the ulterior triplet-triplet annihilation. This unprecedented design takes advantage of the high synthetic accessibility and chemical versatility of the COO-BODIPY scaffold. The laser-induced photophysical characterization, assisted by computational simulations (quantum mechanics calculations at single molecular level and molecular dynamics in a solvent cage), identifies the key factors to finely control the intersystem crossing and reverse intersystem crossing probability, pivotal to improve energy transfer efficiency between the involved triplet states. Likewise, theoretical simulations highlight the relevance of the new photoactivable chromophoric design to promote intra- and inter-molecular triplet-triplet annihilation towards enhanced photon upconversion, yielding noticeable fluorescence from pyrene units even under unfavorable conditions (aerated solutions of low concentration at room temperature). The understanding of the complex dynamics sustained by this single molecular architecture could approach the next generation of chemically accessible and low-cost materials enabling fluorescence by photon upconversion mediated by triplet-triplet annihilation.
Assuntos
Fótons , Pirenos , Transferência de EnergiaRESUMO
A general and straightforward method for the synthesis of COO-BODIPYs from F-BODIPYs and carboxylic acids is established. The method is based on the use of boron trichloride to activate the involved substitution of fluorine, which leads to high yields through rapid reactions under soft conditions. This mild method opens the way to unprecedented laser dyes with outstanding efficiencies and photostabilities, which are difficult to obtain by the current methods.
RESUMO
N-BODIPYs (diaminoboron dipyrromethenes) are unveiled as a new family of BODIPY dyes with huge technological potential. Synthetic access to these systems has been gained through a judicious design focused on stabilizing the involved diaminoboron chelate. Once stabilized, the obtained N-BODIPYs retain the effective photophysical behavior exhibited by other boron-substituted BODIPYs, such as O-BODIPYs. However, key bonding features of nitrogen compared to those of oxygen (enhanced bond valence and different bond directionality) open up new possibilities for functionalizing BODIPYs, allowing an increase in the number of pendant moieties (from two in O-BODIPYs, up to four in N-BODIPYs) near the chromophore and, therefore, greater control of the photophysics. As a proof of concept, the following findings are discussed: (1)â the low-cost and straightforward synthesis of a selected series of N-BODIPYs; (2)â their outstanding photophysical properties compared to those of related effective dyes (excellent emission signatures, including fluorescence in the solid state; notable lasing capacities in the liquid phase and when doped into polymers; improved laser performance compared to the parent F-BODIPYs); (3)â the versatility of the diaminoboron moiety in allowing the generation of multifunctionalized BODIPYs, permitting access to both symmetric and asymmetric dyes; (4)â the capability of such versatility to finely modulate the dye photophysics towards different photonic applications, from lasing to chemosensing.
RESUMO
Simple organic molecules (SOM) based on bis(haloBODIPY) are shown to enable circularly polarized luminescence (CPL), giving rise to a new structural design for technologically valuable CPL-SOMs. The established design comprises together synthetic accessibility, labile helicity, possibility of reversing the handedness of the circularly polarized emission, and reactive functional groups, making it unique and attractive as advantageous platform for the development of smart CPL-SOMs.
Assuntos
Compostos de Boro/química , Dicroísmo Circular , Medições Luminescentes , Conformação Molecular , EstereoisomerismoRESUMO
COO-BODIPYs are highlighted as cutting edge scaffolds for easy access to a new generation of multichromophoric architectures with enhanced (photo)chemical stability, showing either boosted capability for excitation energy transfer, glow fluorescence and laser emission, or photoinduced electron transfer. The new finding paves the way for the rapid development of smarter organic dyes for advancing photonics and optoelectronics.
RESUMO
A series of uncommon bis(BODIPYs), involving a flexible bridge linking the BODIPY α-positions and key functionalities to efficiently give an electronic push-pull effect, has been synthesized, as well as photophysically and structurally studied. It is demonstrated that the designed push-pull effect efficiently enables intramolecular charge transfer (ICT) processes upon photoexcitation, with the generated low-lying ICT state being the main deactivation channel from the locally excited state and, hence, ruling the fluorescence response. Noticeably, this response is modulated by the solvent polarity, and also by the bridge structure. Regarding this, BINOL- and BINAM-based bridges are found to promote an interesting unprecedented solvent-switchable dual emission from the ICT state with high Stokes shifts, triggering a significant bright red emission in less polar media.