Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell Biochem ; 477(2): 345-361, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34716860

RESUMO

The relative contribution of mitochondrial respiration and subsequent energy production in malignant cells has remained controversial to date. Enhanced aerobic glycolysis and impaired mitochondrial respiration have gained more attention in the metabolic study of cancer. In contrast to the popular concept, mitochondria of cancer cells oxidize a diverse array of metabolic fuels to generate a majority of the cellular energy by respiration. Several mitochondrial respiratory chain (MRC) subunits' expressions are critical for the growth, metastasis, and cancer cell invasion. Also, the assembly factors, which regulate the integration of individual MRC complexes into native super-complexes, are upregulated in cancer. Moreover, a series of anti-cancer drugs function by inhibiting respiration and ATP production. In this review, we have specified the roles of mitochondrial fuels, MRC subunits, and super-complex assembly factors that promote active respiration across different cancer types and discussed the potential roles of MRC inhibitor drugs in controlling cancer.


Assuntos
Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Consumo de Oxigênio/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Oxirredução , Consumo de Oxigênio/genética
2.
Mol Carcinog ; 56(9): 2086-2103, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28418078

RESUMO

Triple negative breast cancer (TNBC) tends to form aggressive tumors associated with high mortality and morbidity which urge the need for development of new therapeutic strategies. Recently, the normal metabolite Methylglyoxal (MG) has been documented for its anti-proliferative activity against human breast cancer. However, the mode of action of MG against TNBC remains open to question. In our study, we investigated the anticancer activity of MG in MDA MB 231 and 4T1 TNBC cell lines and elucidated the underlying mechanisms. MG dose-dependently caused cell death, induced apoptosis, and generated ROS in both the TNBC cell lines. Furthermore, such effects were attenuated in presence of ROS scavenger N-Acetyl cysteine. MG triggered mitochondrial cytochrome c release in the cytosol and up-regulated Bax while down-regulated anti-apoptotic protein Bcl-2. Additionally, MG treatment down-regulated phospho-akt and inhibited the nuclear translocation of the p65 subunit of NF-κB. MG exhibited a tumor suppressive effect in BALB/c mouse 4T1 breast tumor model as well. The cytotoxic effect was studied using MTT assay. Apoptosis, ROS generation, and mitochondrial dysfunction was evaluated by flow cytometry as well as fluorescence microscopy. Western blot assay was performed to analyze proteins responsible for apoptosis. This study demonstrated MG as a potent anticancer agent against TNBC both in vitro and in vivo. The findings will furnish fresh insights into the treatment of this subgroup of breast cancer.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Aldeído Pirúvico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição RelA/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
3.
BMC Cancer ; 16: 152, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911935

RESUMO

BACKGROUND: For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. METHODS: GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. RESULT: Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. CONCLUSION: PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG.


Assuntos
Glucose-6-Fosfato Isomerase/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Neoplasias/metabolismo , Piruvato Quinase/metabolismo , Animais , Carcinoma de Ehrlich/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Glucose-6-Fosfato Isomerase/química , Glucose-6-Fosfato Isomerase/genética , Gliceraldeído-3-Fosfato Desidrogenases/química , Gliceraldeído-3-Fosfato Desidrogenases/genética , Espectrometria de Massas , Camundongos , Neoplasias/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Aldeído Pirúvico/farmacologia , Piruvato Quinase/química , Piruvato Quinase/genética
4.
Amino Acids ; 48(8): 2003-13, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27138627

RESUMO

The anti-cancer effect of methylglyoxal (MG) is now well established in the literature. The main aim of this study was to investigate the effect of creatine as a supplement in combination with MG both in vitro and in vivo. In case of the in vitro studies, two different cell lines, namely MCF-7 (human breast cancer cell line) and C2C12 (mouse myoblast cell line) were chosen. MG in combination with creatine showed enhanced apoptosis as well as higher cytotoxicity in the breast cancer MCF-7 cell line, compared to MG alone. Pre-treatment of well-differentiated C2C12 myotubes with cancerogenic 3-methylcholanthrene (3MC) induced a dedifferentiation of these myotubes towards cancerous cells (that mimic the effect of 3MC observed in solid fibro-sarcoma animal models) and subsequent exposure of these induced cancer cells with MG proved to be cytotoxic. Thus, creatine plus ascorbic acid enhanced the anti-cancer effects of MG. In contrast, when normal C2C12 muscle cells or myotubes (mouse normal myoblast cell line) were treated with MG or MG plus creatine and ascorbic acid, no detrimental effects were seen. This indicated that cytotoxic effects of MG are specifically limited towards cancer cells and are further enhanced when MG is used in combination with creatine and ascorbic acid. For the in vivo studies, tumors were induced by injecting Sarcoma-180 cells (2 × 10(6) cells/mouse) in the left hind leg. After 7 days of tumor inoculation, treatments were started with MG (20 mg/kg body wt/day, via the intravenous route), with or without creatine (150 mg/kg body wt/day, fed orally) and ascorbic acid (50 mg/kg body wt/day, fed orally) and continued for 10 consecutive days. Significant regression of tumor size was observed when Sarcoma-180 tumor-bearing mice were treated with MG and even more so with the aforesaid combination. The creatine-supplemented group demonstrated better overall survival in comparison with tumor-bearing mice without creatine. In conclusion, it may be stated that the anti-cancer effect of MG is enhanced by concomitant creatine supplementation, both in chemically transformed (by 3MC) muscle cells in vitro as well as in sarcoma animal model in vivo. These data strongly suggest that creatine supplementation may gain importance as a safe and effective supplement in therapeutic intervention with the anti-cancer agent MG.


Assuntos
Creatina/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Aldeído Pirúvico/farmacologia , Animais , Humanos , Células MCF-7 , Metilcolantreno/toxicidade , Camundongos , Neoplasias Experimentais/induzido quimicamente , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia
5.
Cell Immunol ; 287(1): 27-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24368179

RESUMO

Methylglyoxal (MG), the potent anticancer agent has been conjugated to a nontoxic, biocompatible polymer, chitosan, to protect it from in vivo enzymatic degradation. This polymeric complex, 'Nano-MG' shows remarkable antitumor property and elicits macrophage-mediated immunity in tumor bearing mice on intravenous (0.4 mg/kg body wt/day) treatment more efficiently than MG (20mg/kg body wt/day). These activated macrophages appear more in numbers in the peritoneum and produce more superoxide and nitrite. Moreover, immunomodulatory cytokines and surface receptors of these macrophages like iNOS, IFN-γ, TNF-α, IL-1ß, IL-6, M-CSF, TLR-4 and TLR-9 also exhibit marked up-regulation in Sarcoma-180 tumor bearing mice after Nano-MG treatment compared to untreated tumor bearing counterpart. Hence, Nano-MG acts as an immunostimulant in tumor bearing mice to combat cancer at conspicuously lower dose, probably due to its longer circulation time in blood.


Assuntos
Quitosana/administração & dosagem , Macrófagos/efeitos dos fármacos , Nanopartículas/administração & dosagem , Aldeído Pirúvico/administração & dosagem , Sarcoma/terapia , Animais , Linhagem Celular Tumoral , Quitosana/química , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imunomodulação , Macrófagos/imunologia , Camundongos , Nanopartículas/química , Transplante de Neoplasias , Nitritos/metabolismo , Aldeído Pirúvico/química , Sarcoma/imunologia , Superóxidos/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
6.
Phys Chem Chem Phys ; 16(11): 5276-83, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24496476

RESUMO

Enzymatic regulation is a fast and reliable diagnosis tool via identification and design of inhibitors for modulation of enzyme function. Previous reports on quantum dots (QDs)-enzyme interactions reveal a protein-surface recognition ability leading to promising applications in protein stabilization, protein delivery, bio-sensing and detection. However, the direct use of QDs to control enzyme inhibition has never been revealed to date. Here we show that a series of biocompatible surface-functionalized metal-chalcogenide QDs can be used as potent inhibitors for malignant cells through the modulation of enzyme activity, while normal cells remain unaffected. The in vitro activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme involved critically in the glycolysis of cancer cells, is inactivated selectively in a controlled way by the QDs at a significantly low concentration (nM). Cumulative kinetic studies delineate that the QDs undergo both reversible and irreversible inhibition mechanisms owing to the site-specific interactions, enabling control over the inhibition kinetics. These complementary loss-of-function probes may offer a novel route for rapid clinical diagnosis of malignant cells and biomedical applications.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Pontos Quânticos , Animais , Materiais Biocompatíveis , Glicólise , Xenoenxertos , Camundongos , Sarcoma/patologia
7.
Amino Acids ; 42(6): 2319-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21769499

RESUMO

The creatine/creatine kinase (CK) system plays a key role in cellular energy buffering and transport. In vertebrates, CK has four isoforms expressed in a tissue-specific manner. In the process of creatine biosynthesis several other important metabolites are formed. The anticancer effect of creatine had been reported in the past, and recent literature has reported low creatine content in several types of malignant cells. Furthermore, creatine can protect cardiac mitochondria from the deleterious effects of some anticancer compounds. Previous work from our laboratory showed progressive decrease of phosphocreatine, creatine and CK upon transformation of skeletal muscle into sarcoma. It was convincingly demonstrated that prominent expression of creatine-synthesizing enzymes L-arginine: glycine amidinotransferase and N-guanidinoacetate methyltransferase occurs in sarcoma, Ehrlich ascites carcinoma and sarcoma 180 cells; whereas, both these enzymes are virtually undetectable in skeletal muscle. Creatine transporter also remained unaltered in malignant cells. The anticancer effect of methylglyoxal had been known for a long time. The present work shows that this anticancer effect of methylglyoxal is significantly augmented in presence of creatine. On creatine supplementation the effect of methylglyoxal plus ascorbic acid was further augmented and there was no visible sign of tumor. Moreover, creatine and CK, which were very low in sarcoma tissue, were significantly elevated with the concomitant regression of tumor.


Assuntos
Antineoplásicos/farmacologia , Creatina Quinase/metabolismo , Creatina/farmacologia , Neoplasias Musculares/metabolismo , Músculo Esquelético/metabolismo , Sarcoma/metabolismo , Amidinotransferases , Animais , Ácido Ascórbico/farmacologia , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Neoplasias Musculares/tratamento farmacológico , Neoplasias Musculares/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Aldeído Pirúvico/farmacologia , Sarcoma/tratamento farmacológico , Sarcoma/patologia
8.
IUBMB Life ; 61(10): 995-1000, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19603513

RESUMO

We have purified a novel protein from mice muscle, which through N-terminal amino acid sequencing was identified as a truncated form of mouse albumin. The protein was found to be a monomer of approximately 64 kDa and located in the cytosol. The purified protein strongly crossreacted with commercial albumin antibody. Presence of this protein was observed in different mouse organs. Further biochemical studies as well as CD spectroscopy indicated that the protein binds D-glyceraldehyde-3-phosphate limiting the availability of the substrate to the enzyme D-glyceraldehyde-3-phosphate dehydrogenase, thereby inhibiting its catalytic activity. The implication of this protein in the control of glycolysis has been discussed.


Assuntos
Proteínas de Transporte/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Albuminas/genética , Albuminas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Citosol/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Gliceraldeído 3-Fosfato/genética , Concentração de Íons de Hidrogênio , Camundongos , Dados de Sequência Molecular , Peso Molecular , Músculo Esquelético/enzimologia , Ligação Proteica/genética , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Especificidade por Substrato/genética , Distribuição Tecidual
9.
Cell Mol Biol Lett ; 14(3): 481-96, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19343276

RESUMO

The tissue-specific expressions of creatine kinase (CK) isoforms are regulated by the coordinated action of various transcription factors. The myogenic differentiation factor D (MyoD) family of proteins and the myocyte-specific enhancer binding factor 2 family of transcription factors are important in regulating the muscle-specific expression of cytosolic muscle-type CK (MCK) and mitochondrial CKs. As reported in some related studies, TNF-alpha mediated degradation of MyoD and myogenin mRNA may lead to severe muscle wasting and cachexia, which is characterized by a low transcript level of MCK and myosin heavy chain proteins. In our previous study, we reported on a complete loss of total CK activity and expression when sarcoma was induced in mouse skeletal muscle (Patra et al. FEBS J. 275 (2008) 3236-3247). This study aimed at investigating the transcriptional cascade of CK down-regulation in carcinogen-induced sarcoma in mouse muscle. Both CK deficiency and enhanced nitric oxide synthase (NOS) were known to augment mitochondrial biogenesis, so we also explored the activation of the transcriptional cascade of mitochondrial biogenesis in this cancer. We observed the activation of the TNF-alpha-mediated nitric oxide production pathway with NFkappaB activation and concomitant degradation of MyoD and myogenin mRNA. Exploration of mitochondrial biogenesis revealed high cytochrome c oxidase activity and mitochondrial DNA content in sarcoma. The PGC-related co-activator seems to have a major role in regulating mitochondrial biogenesis by upregulating nuclear respiratory factors and mitochondrial transcription factor A. From the above findings, it can be concluded that severe muscle degeneration leads to CK down-regulation in sarcoma, and that the stimulation of mitochondrial biogenesis indicated a scenario representing both CK deficiency and NOS overexpression on the one hand, and altered bioenergetic profiling on the other.


Assuntos
Creatina Quinase/metabolismo , Mitocôndrias/enzimologia , Sarcoma Experimental/enzimologia , Transcrição Gênica , Animais , Carcinógenos/farmacologia , Diferenciação Celular , Creatina Quinase/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Miogenina/genética , Miogenina/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico Sintase/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sarcoma Experimental/genética , Sarcoma Experimental/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Biomed Pharmacother ; 114: 108855, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31003140

RESUMO

The anti-carcinogenic effect of Methylglyoxal (MG) is well established. It generally targets malignant cells by affecting glycolysis and mitochondrial respiration with minimum or no toxicity to normal cells. In an initial study we have reported that MG can synergistically act with 5-Fluorouracil (5-FU) to decreases the number of MCF-7 breast cancer cells (Ghosh S, Pal A, Ray M, 2017). This finding prompted us to study the combination effect of MG and 5-FU extensively in both in vitro and in vivo. Induction of cell apoptosis and cell cycle arrest was systematically studied to reveal the mechanisms of synergy between 5-FU and MG. Our present study revealed that MG can synergistically act with 5-FU and can cause cell death via apoptosis and generated reactive oxygen species (ROS) in MCF-7 cells. Combination of 5-FU and MG resulted in more potent apoptosis induction as revealed by fluorescence microscopy using Hoechst 33342. In comparison to single drug treatment, the co-treatment also increased the number of cells in G0/G1 phase by downregulating the expression of CDK4 and CDK6 as compared to single drug treatment. Levels of Caspase 9 and poly (ADP-ribose) polymerase (PARP) were higher in combination treatment as compared to single drug treatment. These results clearly showed that 5-FU is more effective at lower doses in presence of MG in MCF-7 cells. In case of in vivo studies treatment of EAC (Ehrlich Ascites Carcinoma) bearing mice with MG in combination with 5-FU at various doses, demonstrated the same synergistic effect of MG with 5-FU. The combination study also exhibited tumor regression in BALB/c mouse 4T1 breast tumor model as well. We also clearly demonstrated that MG can decrease the cytotoxic side effects of 5-FU as indicated with acute and chronic toxicity studies and other biochemical analyses of blood and histological studies. Taken together, our results revealed that MG could be a potential candidate for combination therapy to reduce the toxicity burden of 5-FU without any toxic impact on host cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Fluoruracila/farmacologia , Aldeído Pirúvico/farmacologia , Células A549 , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
FEBS J ; 275(12): 3236-47, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18485002

RESUMO

In vertebrates, phosphocreatine and ATP are continuously interconverted by the reversible reaction of creatine kinase in accordance with cellular energy needs. Sarcoma tissue and its normal counterpart, creatine-rich skeletal muscle, are good source materials to study the status of creatine and creatine kinase with the progression of malignancy. We experimentally induced sarcoma in mouse leg muscle by injecting either 3-methylcholanthrene or live sarcoma 180 cells into one hind leg. Creatine, phosphocreatine and creatine kinase isoform levels decreased as malignancy progressed and reached very low levels in the final stage of sarcoma development; all these parameters remained unaltered in the unaffected contralateral leg muscle of the same animal. Creatine and creatine kinase levels were also reduced significantly in frank malignant portions of human sarcoma and gastric and colonic adenocarcinoma compared with the distal nonmalignant portions of the same samples. In mice, immunoblotting with antibodies against cytosolic muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase showed that both of these isoforms decreased as malignancy progressed. Expressions of mRNA of muscle-type creatine kinase and sarcomeric mitochondrial creatine kinase were also severely downregulated. In human sarcoma these two isoforms were undetectable also. In human gastric and colonic adenocarcinoma, brain-type creatine kinase was found to be downregulated, whereas ubiquitous mitochondrial creatine kinase was upregulated. These significantly decreased levels of creatine and creatine kinase isoforms in sarcoma suggest that: (a) the genuine muscle phenotype is lost during sarcoma progression, and (b) these parameters may be used as diagnostic marker and prognostic indicator of malignancy in this tissue.


Assuntos
Transformação Celular Neoplásica/metabolismo , Creatina Quinase/metabolismo , Creatina/metabolismo , Músculo Esquelético/metabolismo , Neoplasias de Tecido Muscular/metabolismo , Fosfocreatina/metabolismo , Sarcoma/metabolismo , Adenocarcinoma/enzimologia , Animais , Neoplasias Colorretais/enzimologia , Creatina Quinase/análise , Creatina Quinase/genética , Creatina Quinase Forma BB/análise , Creatina Quinase Forma MM/análise , Creatina Quinase Mitocondrial/análise , Progressão da Doença , Humanos , Immunoblotting , Camundongos , Músculo Esquelético/enzimologia , Neoplasias de Tecido Muscular/enzimologia , Neoplasias de Tecido Muscular/patologia , RNA Mensageiro/metabolismo , Sarcoma/enzimologia , Sarcoma Experimental/enzimologia , Sarcoma Experimental/metabolismo , Sarcoma Experimental/patologia , Neoplasias Gástricas/enzimologia
12.
J Antimicrob Chemother ; 61(5): 1066-75, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18285311

RESUMO

OBJECTIVES: The possibility of developing antileishmanial drugs was evaluated by intervention in the parasite's iron metabolism, utilizing quercetin (Qr) under in vivo conditions, and identifying the target of this lipophilic metal chelator against Leishmania donovani. METHODS: Interaction between Qr and serum albumin (SA) was studied by using the intrinsic fluorescence of Qr as a probe. The effect of treatment with Qr and SA on the proliferation of amastigotes was determined by evaluating splenic parasite load. Disintegration of parasites in response to combination treatment was assessed from ultrastructural analysis using a transmission electron microscope. Quenching of the tyrosyl radical of ribonucleotide reductase (RR) in treated amastigotes was detected by an electron paramagnetic resonance study. RESULTS: Treatment with a combination of Qr and SA increased bioavailability of the flavonoid and proved to be of major advantage in promoting the effectiveness of Qr towards the repression of splenic parasite load from 75%, P < 0.01 to 95%, P < 0.002. Qr-mediated down-regulation of RR (P < 0.05), catalysing the rate-limiting step of DNA synthesis in the pathogens, could be related to the deprivation of the enzyme of iron which in turn destabilized the critical tyrosyl radical required for its catalysing activity. CONCLUSIONS: Results have implications for improved leishmanicidal action of Qr in combination with SA targeting RR and suggest future drug design based on interference with the parasite's iron metabolism under in vivo conditions.


Assuntos
Ferro/metabolismo , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/metabolismo , Quercetina/farmacologia , Ribonucleotídeo Redutases/antagonistas & inibidores , Animais , Antiprotozoários/farmacologia , Cricetinae , Leishmania donovani/ultraestrutura , Leishmaniose/tratamento farmacológico , Conformação Molecular , Quercetina/química , Ribonucleotídeo Redutases/metabolismo , Albumina Sérica/metabolismo , Baço/patologia
13.
Int Immunopharmacol ; 8(11): 1503-12, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18617020

RESUMO

Methylglyoxal is a normal metabolite and has the potential to affect a wide variety of cellular processes. In particular, it can act selectively against malignant cells. The study described herein was to investigate whether methylglyoxal can enhance the non-specific immunity of the host against tumor cells. Methylglyoxal increased the number of macrophages in the peritoneal cavity of both normal and tumor-bearing mice. It also elevated the phagocytic capacity of macrophages in both these groups of animals. This activation of macrophages was brought about by increased production of Reactive Oxygen Intermediates (ROIs) and Reactive Nitrogen Intermediates (RNIs). The possible mechanism for the production of ROIs and RNIs can be attributed to stimulation of the respiratory burst enzyme NADPH oxidase and iNOS, respectively. IFN-gamma, which is a regulatory molecule of iNOS pathway also showed an elevated level by methylglyoxal. TNF-alpha, which is an important cytokine for oxygen independent killing by macrophage also increased by methylglyoxal in both tumor-bearing and non tumor-bearing animals. Methylglyoxal also played a role in the proliferation and cytotoxicity of splenic lymphocytes. In short, it can be concluded that methylglyoxal profoundly stimulates the immune system against tumor cells.


Assuntos
Antineoplásicos/farmacologia , Linfócitos/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Aldeído Pirúvico/farmacologia , Sarcoma 180/imunologia , Animais , Proliferação de Células/efeitos dos fármacos , Concanavalina A/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Feminino , Interferon gama/biossíntese , Interleucina-12/biossíntese , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/imunologia , Camundongos , NADP/análise , Óxido Nítrico Sintase Tipo II/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Nitritos/imunologia , Nitritos/metabolismo , Superóxidos/imunologia , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
14.
Drug Metabol Drug Interact ; 23(1-2): 175-210, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18533369

RESUMO

A historical perspective on methylglyoxal research is briefly presented, mentioning the documented anticancer and antiviral effects of methylglyoxal. The idea and the supporting experimental evidence of Albert Szent-Györgyi et al. that methylglyoxal is a natural growth regulator and can act as an anticancer agent are mentioned. Previously a few in vivo studies suggested safe administration of methylglyoxal. However, recent literature abounds with the toxic effects of methylglyoxal. The authors present a brief critical overview of studies indicating both toxic and beneficial effects of methylglyoxal and suggest that the beneficial effects of methylglyoxal outweigh its toxic effects. Encouraged by the studies of Szent-Györgyi et al., the present authors undertook systematic investigations to understand the mechanism of the anticancer effect of methylglyoxal. The results of these investigations led to the proposal that the fundamental changes in malignant cells are critical alterations of glyceraldehyde-3-phosphate dehydrogenase and mitochondrial complex I, and methylglyoxal's anticancer effect might be mediated by acting on these altered sites. Moreover, a new hypothesis on cancer has been proposed, suggesting that excessive ATP formation in cells may lead to malignancy. Toxicity and pharmacokinetic studies were performed on animals and it was observed that methylglyoxal is potentially safe for humans. A methylglyoxal-based anticancer formulation was developed and a three-phase study of treating a total number of 86 cancer patients was carried out. The results appear to be promising. Most of the cancer patients benefited greatly and a significant number of patients became free of the disease. Contrary to the effect of existing anticancer drugs, this methylglyoxal-based formulation is devoid of any toxic effect and reasonably effective against a wide variety of cancers. The symptomatic improvements of the many patients who died of progressive disease suggest that the formulation could also be used for palliation. The authors urge the scientific community to test the formulation and if found effective then to improve it further.


Assuntos
Antineoplásicos/farmacologia , Aldeído Pirúvico/farmacologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Ensaios Clínicos como Assunto , Complicações do Diabetes/metabolismo , Feminino , Produtos Finais de Glicação Avançada/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Aldeído Pirúvico/metabolismo , Aldeído Pirúvico/uso terapêutico
15.
Biochem Pharmacol ; 156: 322-339, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30170097

RESUMO

Potent anticancer activity coupled with absence of toxicity at therapeutic dose established the glycolytic metabolite, methylglyoxal, as a promising candidate against malignant neoplasia. In this preclinical study we illustrate the applicability of methylglyoxal in formulating an optimally designed combination regimen with chemotherapeutic drugs against breast cancer. Results demonstrated a synergistic augmentation in doxorubicin and cisplatin mediated cytotoxicity in human breast cancer cell lines MDA MB 231 & MCF 7 with methylglyoxal co-treatment at metronomic concentrations. The cell death due to combination treatment was significantly prevented by N-Acetylcysteine and the synergistic effects were attenuated in presence of inhibitors for apoptosis and necroptosis, in MDA MB 231 and MCF 7 cells, respectively. Additionally, acridine orange staining and immunoblotting with LC3B antibody indicated the suppression of doxorubicin induced autophagy flux with methylglyoxal co-treatment. This report documents for the first time the preferential targeting of breast cancer stem cells by methylglyoxal. Combination treatment with doxorubicin or cisplatin hindered mammosphere forming efficiency and inclusively eliminated both cancer stem as well as non-stem cancer cells. The synergistic effect was validated in Ehrlich mammary carcinoma cell induced murine ascites model and the combination advantage in vivo was achieved without any additional deleterious effect to liver and kidney. Our present study evidences the implications of methylglyoxal inclusion in adjuvant multimodal chemotherapeutics against breast cancer and offers noteworthy insights into the possible outcome.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Doxorrubicina/farmacologia , Aldeído Pirúvico/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Autofagia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Doxorrubicina/administração & dosagem , Esquema de Medicação , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Neoplasias Experimentais , Aldeído Pirúvico/administração & dosagem , Espécies Reativas de Oxigênio , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Nanomedicine ; 10: 3499-518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999714

RESUMO

PURPOSE: The normal metabolite methylglyoxal (MG) specifically kills cancer cells by inhibiting glycolysis and mitochondrial respiration without much adverse effect upon normal cells. Though the anticancer property of MG is well documented, its gradual enzymatic degradation in vivo has prompted interest in developing a nanoparticulate drug delivery system to protect it and also to enhance its efficacy. MATERIALS AND METHODS: MG-conjugated chitosan nanoparticles (Nano-MG) were prepared by conjugating the carbonyl group of MG with the amino group of chitosan polymer (Schiff's base formation). Nano-MG were characterized in detail using the dynamic light scattering method, zeta potential measurement, Fourier transform infrared spectroscopy, and transmission electron microscopic analysis. Amount of MG anchored to Nano-MG, stability of Nano-MG, and in vitro release of MG from Nano-MG were estimated spectrophotometrically. Ehrlich ascites carcinoma (EAC) cells, human breast cancer cell line HBL-100, and lung epithelial adenocarcinoma cell line A549 were used as test systems to compare Nano-MG with bare MG in vitro. Cytotoxicity to EAC cells was evaluated by the trypan blue dye exclusion test, and cell viability of HBL-100 and A549 cells were studied using 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis of HBL-100 cells was assessed by flow cytometry and confocal microscopy. In vivo studies were performed on both EAC cells inoculated and also in sarcoma-180-induced solid tumor-bearing Swiss albino mice to assess the anticancer activity of Nano-MG in comparison to bare MG with varying doses, times, and administrative routes. RESULTS: Fourier transform infrared spectroscopy revealed the presence of imine groups in Nano-MG due to conjugation of the amino group of chitosan and carbonyl group of MG with diameters of nanoparticles ranging from 50-100 nm. The zeta potential of Nano-MG was +21 mV and they contained approximately 100 µg of MG in 1 mL of solution. In vitro studies with Nano-MG showed higher cytotoxicity and enhanced rate of apoptosis in the HBL-100 cell line in comparison with bare MG, but no detrimental effect on normal mouse myoblast cell line C2C12 at the concerned doses. Studies with EAC cells also showed increased cell death of nearly 1.5 times. Nano-MG had similar cytotoxic effects on A549 cells. In vivo studies further demonstrated the efficacy of Nano-MG over bare MG and found them to be about 400 times more potent in EAC-bearing mice and nearly 80 times more effective in sarcoma-180-bearing mice. Administration of ascorbic acid and creatine during in vivo treatments augmented the anticancer effect of Nano-MG. CONCLUSION: The results clearly indicate that Nano-MG may constitute a promising tool in anticancer therapeutics in the near future.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas , Aldeído Pirúvico , Animais , Antineoplásicos/química , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quitosana/química , Quitosana/toxicidade , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/toxicidade , Nanotecnologia , Aldeído Pirúvico/química , Aldeído Pirúvico/toxicidade
17.
Indian J Biochem Biophys ; 41(1): 7-13, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22896902

RESUMO

Ehrlich ascites carcinoma (EAC) cell glyceraldehyde-3-phosphate dehydrogenase (GA3PD) (EC. 1.2.1.12) was completely inactivated by diethyl pyrocarbonate (DEPC), a fairly specific reagent for histidine residues in the pH range of 6.0-7.5. The rate of inactivation was dependent on pH and followed pseudo-first order reaction kinetics. The difference spectrum of the inactivated and native enzymes showed an increase in the absorption maximum at 242 nm, indicating the modification of histidine residues. Statistical analysis of the residual enzyme activity and the extent of modification indicated modification of one essential histidine residue to be responsible for loss of the catalytic activity of EAC cell GA3PD. DEPC inactivation was protected by substrates, D-glyceraldehyde-3-phosphate and NAD, indicating the presence of essential histidine residue at the substrate-binding region of the active site. Double inhibition studies also provide evidence for the presence of histidine residue at the active site.


Assuntos
Carcinoma de Ehrlich/metabolismo , Regulação Enzimológica da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/biossíntese , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/química , Histidina/química , Animais , Domínio Catalítico , Dietil Pirocarbonato/química , Ácido Ditionitrobenzoico/química , Concentração de Íons de Hidrogênio , Hidroxilamina/química , Cinética , Camundongos
18.
Indian J Biochem Biophys ; 39(5): 332-41, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22905379

RESUMO

3-Phosphoglycerate kinase (3-PGK) has been purified to apparent homogeneity from Ehrlich ascites carcinoma (EAC) cells by (NH4)2SO4 precipitation, gel filtration and ion-exchange chromatography. The enzyme has been partially characterized and compared with the characteristics of this enzyme of other normal and malignant cells. The EAC cell 3-PGK is composed of a single subunit of 47 kDa. It has a broad pH optimum (pH 6.0-7.5) for its enzymatic activity. The apparent Km values of 3-phosphoglycerate (3-PGA) and ATP for 3-PGK have been found out to be 0.25 mM and 0.1 mM respectively. Similar to 3-PGK of other cells, the EAC enzyme requires either Mg2+ or Mn2+ for full activity; the optimum concentrations of Mg2+ and Mn2+ are 0.8 mM and 0.5 mM respectively. When ATP and 3-PGA act as substrates, ADP, the reaction product of 3-PGK-catalyzed reaction has been found to inhibit this enzyme. Kinetic studies were made on the inhibition of ADP in presence of the substrates ATP and 3-PGA. Attempts to hybridize 3-PGK and glyceraldehyde-3-phosphate dehydrogenase of EAC cells by NAD or glutaraldehyde were unsuccessful.


Assuntos
Carcinoma de Ehrlich/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fosfoglicerato Quinase/química , Fosfoglicerato Quinase/isolamento & purificação , Difosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Cromatografia em Gel , Cromatografia por Troca Iônica/métodos , Ácido Edético/química , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Manganês/química , Mercaptoetanol/farmacologia , Camundongos , Transplante de Neoplasias , Hibridização de Ácido Nucleico
20.
Bioresour Technol ; 102(3): 2394-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21109430

RESUMO

The interaction of Acid Yellow 99 (AY 99) with coir pith has been investigated in aqueous medium to understand the mechanism of adsorption and explore the potentiality of this biomass towards controlling pollution resulting from textile dyes. The obtained results establish that one gram of coir pith can adsorb 442.13 mg of AY 99. The adsorption process is found to be a function of pH of the solution, the optimum pH value being 2.0. The process follows Langmuir-Freundlich dual isotherm model. Scanning electron microscopic analysis demonstrates that on dye adsorption the biomass develops uneven and irregular surface. X-ray diffraction study indicates incorporation of the dye into the micropores and macropores of the adsorbent and thereby enhancing its degree of crystallinity. The results of Fourier transform infrared (FTIR) spectroscopy and chemical modification of the functional groups establish that binding of AY 99 on coir pith occurs through electrostatic and complexation reaction.


Assuntos
Compostos Azo/química , Compostos Azo/isolamento & purificação , Lignina/análogos & derivados , Poluentes da Água/química , Poluentes da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Lignina/química , Ultrafiltração/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa