Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Mater ; 18(5)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37552994

RESUMO

In this study, highly interconnected porous scaffolds fromAntheraea mylittasilk fibroin (SF) and chitosan (CH) were fabricated using the freeze-drying method. The weight ratios of SF to CH were varied from 90:10 (SF90/CH10) to 50:50 (SF50/CH50) to prepare the scaffolds from the aqueous suspension of the protein-polysaccharide mix. From the initial optimization of scaffold composition with respect to their microstructure, porosity, and mechanical properties, the SF80/CH20scaffold exhibited the most suitable properties for bone tissue engineering application as compared to others compositions. Hencein-vitrohemocompatibility, protein adsorption, and MG-63 cell culture studies were carried out for SF80/CH20scaffold. The fabricated SF80/CH20scaffold showed a more controlled swelling percentage of 42.8%, with high BSA protein adsorption of 0.39 mg of BSA per gm of the scaffold at 24 h incubation period. Furthermore,in-vitroMG-63 cell culture study onto the fabricated SF80/CH20scaffold elicited excellent MG-63 cell attachment with better biocompatibility and cell viability with increased F-action production from day 3 to day 7 of the cell culture period.In vivobone defect healing in a rabbit tibia model revealed excellent bone healing capacity in SF80/CH20scaffold implanted specimens compared to control ones, as evident from histology and fluorochrome labeling analysis.


Assuntos
Quitosana , Fibroínas , Animais , Coelhos , Alicerces Teciduais/química , Fibroínas/química , Engenharia Tecidual/métodos , Regeneração Óssea , Porosidade
2.
J Biomater Sci Polym Ed ; 32(10): 1312-1336, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33874849

RESUMO

The present study focuses on the synthesis and characterization of hydroxyapatite-collagen nanoparticles incorporated polyanhydride paste and investigating its bone regeneration capacity in vitro. Photocrosslinkable polyanhydride paste was prepared after synthesizing methacrylate derivatives of 1,6-bis(p-carboxyphenoxy)hexane (MCPH) and sebacic acid dimethacrylate (MSA). These multifunctional monomers, namely 45 wt% MSA, 45 wt% MCPH in addition to 10 wt% poly(ethylene glycol)diacrylate (PEGDA) were photopolymerized under ultraviolet light (365 nm) to produce highly crosslinked polyanhydride networks using camphroquinone (CQ)/ethyl 4-(dimethylamino)benzoate [4-EDMAB] for light initiated crosslinking and benzoyl peroxide (BPO)/dimethyl toludine (DMT) for chemically initiated crosslinking. Separately, using the co-precipitation process, (1 wt%) Si, (1 wt%) Sr, and (0.5 + 0.5) wt% Si/Sr was doped into hydroxyapatite-collagen nanoparticles in size range between 50 and 70 nm. Si, Sr, and both Si/Sr doped hydroxyapatite-collagen nanoparticles to the extent 10 wt% were added to polyanhydride monomer mixture containing 40 wt% MSA, 40 wt% MCPH and 10 wt% PEGDA and subsequently photopolymerized as previously mentioned. Incorporation of hydroxyapatite-collagen nanoparticles to the extent of 10 wt% into polyanhydride matrix enhanced compressive strength of the hardened paste from 30 to 49 MPa. Mesenchymal stem cells obtained from the human umbilical cord were cultured onto pure polyanhydride and hydroxyapatite-collagen added scaffold to assess their cellular proliferation and differentiation capacity to bone cell. MTT assay showed that mesenchymal stem cell proliferation was significantly higher in Si/Sr binary doped hydroxyapatite-collagen-polyanhydride sample as compared to other samples. Again from immunocytochemistry study using confocal images suggested that expression of osteocalcin, a marker indicating differentiation into osteoblast, was the highest in Si/Sr binary doped hydroxyapatite-collagen-polyanhydride sample against the other samples studied in this case. This study thus summarizes the development of photocurable biocomposites containing polyanhydride and Si, Sr doped hydroxyapatite-collagen nanoparticles that exhibited tremendous promise to regenerate bone tissues in complex-shaped musculoskeletal defect sites.


Assuntos
Substitutos Ósseos , Nanopartículas , Polianidridos , Osso e Ossos , Colágeno , Durapatita , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa