Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 37(6): 1708-1726, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32096861

RESUMO

Over evolutionary time, pathogen challenge shapes the immune phenotype of the host to better respond to an incipient threat. The extent and direction of this selection pressure depend on the local pathogen composition, which is in turn determined by biotic and abiotic features of the environment. However, little is known about adaptation to local pathogen threats in wild animals. The Gentoo penguin (Pygoscelis papua) is a species complex that lends itself to the study of immune adaptation because of its circumpolar distribution over a large latitudinal range, with little or no admixture between different clades. In this study, we examine the diversity in a key family of innate immune genes-the Toll-like receptors (TLRs)-across the range of the Gentoo penguin. The three TLRs that we investigated present varying levels of diversity, with TLR4 and TLR5 greatly exceeding the diversity of TLR7. We present evidence of positive selection in TLR4 and TLR5, which points to pathogen-driven adaptation to the local pathogen milieu. Finally, we demonstrate that two positively selected cosegregating sites in TLR5 are sufficient to alter the responsiveness of the receptor to its bacterial ligand, flagellin. Taken together, these results suggest that Gentoo penguins have experienced distinct pathogen-driven selection pressures in different environments, which may be important given the role of the Gentoo penguin as a sentinel species in some of the world's most rapidly changing environments.


Assuntos
Seleção Genética , Spheniscidae/genética , Receptores Toll-Like/genética , Animais , Flagelina/imunologia , Variação Genética , Filogeografia , Spheniscidae/imunologia
2.
J Hered ; 110(7): 801-817, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31737899

RESUMO

Rockhopper penguins are delimited as 2 species, the northern rockhopper (Eudyptes moseleyi) and the southern rockhopper (Eudyptes chrysocome), with the latter comprising 2 subspecies, the western rockhopper (Eudyptes chrysocome chrysocome) and the eastern rockhopper (Eudyptes chrysocome filholi). We conducted a phylogeographic study using multilocus data from 114 individuals sampled across 12 colonies from the entire range of the northern/southern rockhopper complex to assess potential population structure, gene flow, and species limits. Bayesian and likelihood methods with nuclear and mitochondrial DNA, including model testing and heuristic approaches, support E. moseleyi and E. chrysocome as distinct species lineages with a divergence time of 0.97 Ma. However, these analyses also indicated the presence of gene flow between these species. Among southern rockhopper subspecies, we found evidence of significant gene flow and heuristic approaches to species delimitation based on the genealogical diversity index failed to delimit them as species. The best-supported population models for the southern rockhoppers were those where E. c. chrysocome and E. c. filholi were combined into a single lineage or 2 lineages with bidirectional gene flow. Additionally, we found that E. c. filholi has the highest effective population size while E. c. chrysocome showed similar effective population size to that of the endangered E. moseleyi. We suggest that the current taxonomic definitions within rockhopper penguins be upheld and that E. chrysocome populations, all found south of the subtropical front, should be treated as a single taxon with distinct management units for E. c. chrysocome and E. c. filholi.


Assuntos
Genética Populacional , Filogenia , Filogeografia , Spheniscidae/classificação , Spheniscidae/genética , Animais , Densidade Demográfica
3.
Conserv Physiol ; 11(1): coad063, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053739

RESUMO

Wildlife tourism is increasing worldwide and monitoring the impact of tourism on wild populations is of the utmost importance for species conservation. The Magellanic penguin Spheniscus magellanicus colony at Martillo Island, Argentina, was studied in the 2016-2020 breeding seasons. In all seasons, adults and chicks belonged to: (i) an area close to or within the tourist trail or (ii) an area far from the tourist trail and out of sight of the tourists. Blood samples were taken for carbon and nitrogen stable isotope composition, in order to estimate trophic niches, and for smears that were made in situ and were then stained in the laboratory where leucocyte counts and differentiation were made under optical microscope. Heterophil to lymphocyte ratios were used as proxies of stress. Repeated sampling showed individual stress levels reduced while wintering. In 2017, stress levels and trophic values were lower than 2018 for the same individuals. Trophic levels did not differ between tourism and no tourism areas within each season, and differed between 2017 and the remaining seasons, indicating a possible diet shift that year. Stress levels were higher for the tourism area than the no tourism area for adults and chicks in all years except for 2020, when stress levels in the tourism area were lower and similar to the no tourism area that year and previous years. Vessel transit within the Beagle Channel and tourist visitation to the penguin colony was greatly reduced in 2020 due to the Covid-19 pandemic. A combination of internal characteristics and external factors may be affecting the stress physiology of individuals. Therefore, future research should include sampling of multiple aspects of penguin physiology, behaviour and environmental context in order to evaluate each effect on Magellanic penguin stress and, ultimately, inform the conservation of this iconic species in time.

4.
Mar Pollut Bull ; 174: 113184, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34856432

RESUMO

Penguins accumulate mercury due to their long-life span together with their high trophic position. We sampled adult and juveniles' feathers from three colonies of Spheniscus magellanicus from Tierra del Fuego along an inshore-offshore corridor. We integrated toxicological information (mercury concentrations) and foraging biomarkers (δ13C, δ15N) into a common data analysis framework (isotopic niche analysis) to evaluate the influence of age, location, and foraging behaviors on mercury concentrations. Adults had higher feather mercury concentrations, δ13C, and δ15N values compared to juveniles. Also, adult and juvenile feather mercury concentrations differed between colonies, with lower mercury concentrations at the nearest inshore colony relative to the farther offshore colonies. Trophic position and the isotopic niche analyses suggest that this geographic gradient in mercury concentrations is due to differences in colonies' foraging areas. Understanding penguins' exposure to mercury derived from local food webs is a crucial first step in evaluating the impacts of this heavy metal on their conservation status.


Assuntos
Mercúrio , Spheniscidae , Animais , Monitoramento Ambiental , Plumas/química , Cadeia Alimentar , Mercúrio/análise
5.
PLoS One ; 16(8): e0256339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34415944

RESUMO

Magellanic penguins (Spheniscus magellanicus) disperse widely during winter and are a major consumer of marine resources over the Patagonian Shelf. Magellanic penguins were equipped with geolocators at Martillo Island in late February- early March 2017 and recaptured at the beginning of the next breeding season to recover the devices and to collect blood samples for stable carbon (δ13C) and nitrogen (δ15N) isotope analysis. We evaluated their whole winter dispersal and their trophic niche by sex during the last month of the winter dispersal. Also, we evaluated their spatial overlap with bottom trawl and shrimp fisheries using data from satellite fisheries monitoring. Penguins dispersed northwards up to 42°S and showed latitudinal spatial segregation between sexes during May to August (females were located further north than males). In contrast, during the last month of the winter dispersal females were located more southerly and showed lower trophic position than males. Also, females did not dive as deep as males during winter. We found high overlap between both fisheries and penguin's spatial use in regions with documented interaction. However, no sex-specific statistical differences with fisheries overlap were found. Our results highlight the importance of understanding the spatial domains of each sex and assessment of their potential conflicts with bottom trawl fishery and shrimp fishery during the winter period.


Assuntos
Comportamento Alimentar , Pesqueiros , Spheniscidae/fisiologia , Animais , Barbarea , Mergulho/fisiologia , Feminino , Masculino , Estações do Ano , Caracteres Sexuais
6.
Ecol Evol ; 10(21): 12264-12276, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33209286

RESUMO

Optimal foraging theory predicts an inverse relationship between the availability of preferred prey and niche width in animals. Moreover, when individuals within a population have identical prey preferences and preferred prey is scarce, a nested pattern of trophic niche is expected if opportunistic and selective individuals can be identified. Here, we examined intraspecific variation in the trophic niche of a resident population of striated caracara (Phalcoboenus australis) on Isla de los Estados (Staten Island), Argentina, using pellet and stable isotope analyses. While this raptor specializes on seabird prey, we assessed this population's potential to forage on terrestrial prey, especially invasive herbivores as carrion, when seabirds are less accessible. We found that the isotopic niche of this species varies with season, age, breeding status, and, to a lesser extent, year. Our results were in general consistent with classic predictions of the optimal foraging theory, but we also explore other possible explanations for the observed pattern. Isotopic niche was broader for groups identified a priori as opportunistic (i.e., nonbreeding adults during the breeding season and the whole population during the nonbreeding season) than it was for individuals identified a priori as selective. Results suggested that terrestrial input was relatively low, and invasive mammals accounted for no more than 5% of the input. The seasonal pulse of rockhopper penguins likely interacts with caracara's reproductive status by constraining the spatial scale on which individuals forage. Niche expansion in spatially flexible individuals did not reflect an increase in terrestrial prey input; rather, it may be driven by a greater variation in the types of marine prey items consumed.

7.
Ecol Evol ; 10(7): 3346-3355, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32273992

RESUMO

Population connectivity is driven by individual dispersal potential and modulated by natal philopatry. In seabirds, high vagility facilitates dispersal yet philopatry is also common, with foraging area overlap often correlated with population connectivity. We assess the interplay between these processes by studying past and current connectivity and foraging niche overlap among southern rockhopper penguin colonies of the coast of southern South America using genomic and stable isotope analyses. We found two distinct genetic clusters and detected low admixture between northern and southern colonies. Stable isotope analysis indicated niche variability between colonies, with Malvinas/Falklands colonies encompassing the species entire isotopic foraging niche, while the remaining colonies had smaller, nonoverlapping niches. A recently founded colony in continental Patagonia differed in isotopic niche width and position with Malvinas/Falklands colonies, its genetically identified founder population, suggesting the exploitation of novel foraging areas and/or prey items. Additionally, dispersing individuals found dead across the Patagonian shore in an unusual mortality event were also assigned to the northern cluster, suggesting northern individuals reach southern localities, but do not breed in these colonies. Facilitated by variability in foraging strategies, and especially during unfavorable conditions, the number of dispersing individuals may increase and enhance the probability of founding new colonies. Metapopulation demographic dynamics in seabirds should account for interannual variability in dispersal behavior and pay special attention to extreme climatic events, classically related to negative effects on population trends.

8.
PLoS One ; 11(10): e0163441, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27783627

RESUMO

Commerson's dolphins (Cephalorhynchus c. commersonii) and Peale's dolphins (Lagenorhynchus australis) are two of the most common species of cetaceans in the coastal waters of southwest South Atlantic Ocean. Both species are listed as Data Deficient by the IUCN, mainly due to the lack of information about population sizes and trends. The goal of this study was to build spatially explicit models for the abundance of both species in relation to environmental variables using data collected during eight scientific cruises along the Patagonian shelf. Spatial models were constructed using generalized additive models. In total, 88 schools (212 individuals) of Commerson's dolphin and 134 schools (465 individuals) of Peale's dolphin were recorded in 8,535 km surveyed. Commerson's dolphin was found less than 60 km from shore; whereas Peale's dolphins occurred over a wider range of distances from the coast, the number of animals sighted usually being larger near or far from the coast. Fitted models indicate overall abundances of approximately 22,000 Commerson's dolphins and 20,000 Peale's dolphins in the total area studied. This work provides the first large-scale abundance estimate for Peale's dolphin in the Atlantic Ocean and an update of population size for Commerson's dolphin. Additionally, our results contribute to baseline data on suitable habitat conditions for both species in southern Patagonia, which is essential for the implementation of adequate conservation measures.


Assuntos
Golfinhos/fisiologia , Ecossistema , Animais , Oceano Atlântico , Modelos Teóricos , Densidade Demográfica
9.
Mar Pollut Bull ; 97(1-2): 408-418, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26072048

RESUMO

The wide geographic distribution of penguins (Order Sphenisciformes) throughout the Southern Hemisphere provided a unique opportunity to use a single taxonomic group as biomonitors of mercury among geographically distinct marine ecosystems. Mercury concentrations were compared among ten species of penguins representing 26 geographically distinct breeding populations. Mercury concentrations were relatively low (⩽2.00ppm) in feathers from 18/26 populations considered. Population-level differences in trophic level explained variation in mercury concentrations among Little, King, and Gentoo penguin populations. However, Southern Rockhopper and Magellanic penguins breeding on Staten Island, Tierra del Fuego, had the highest mercury concentrations relative to their conspecifics despite foraging at a lower trophic level. The concurrent use of stable isotope and mercury data allowed us to document penguin populations at the greatest risk of exposure to harmful concentrations of mercury as a result of foraging at a high trophic level or in geographic 'hot spots' of mercury availability.


Assuntos
Exposição Ambiental/análise , Mercúrio/análise , Spheniscidae/metabolismo , Poluentes Químicos da Água/análise , Animais , Regiões Antárticas , Ecossistema , Plumas/química , Mercúrio/farmacocinética , Estado Nutricional , Densidade Demográfica , África do Sul , América do Sul , Austrália do Sul , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa