Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34649990

RESUMO

Reconstructing Cenozoic history of continental silicate weathering is crucial for understanding Earth's carbon cycle and greenhouse history. The question of whether continental silicate weathering increased during the late Cenozoic, setting the stage for glacial cycles, has remained controversial for decades. Whereas numerous independent proxies of weathering in ocean sediments (e.g., Li, Sr, and Os isotopes) have been interpreted to indicate that the continental silicate weathering rate increased in the late Cenozoic, beryllium isotopes in seawater have stood out as an important exception. Beryllium isotopes have been interpreted to indicate stable continental weathering and/or denudation rates over the last 12 Myr. Here we present a Be cycle model whose results show that variations in the 9Be weathering flux are counterbalanced by near-coastal scavenging while the cosmogenic 10Be flux from the upper atmosphere stays constant. As a result, predicted seawater 10Be/9Be ratios remain nearly constant even when global denudation and Be weathering rates increase by three orders of magnitude. Moreover, 10Be/9Be records allow for up to an 11-fold increase in Be weathering and denudation rates over the late Cenozoic, consistent with estimates from other proxies. The large increase in continental weathering indicated by multiple proxies further suggests that the increased CO2 consumption by continental weathering, driven by mountain-building events, was counterbalanced by other geological processes to prevent a runaway icehouse condition during the late Cenozoic. These processes could include enhanced carbonate dissolution via pyrite weathering, accelerated oxidation of fossil organic carbon, and/or reduced basalt weathering as the climate cooled.

2.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34373328

RESUMO

During the last interglacial (LIG) period, global mean sea level (GMSL) was higher than at present, likely driven by greater high-latitude insolation. Past sea-level estimates require elevation measurements and age determination of marine sediments that formed at or near sea level, and those elevations must be corrected for glacial isostatic adjustment (GIA). However, this GIA correction is subject to uncertainties in the GIA model inputs, namely, Earth's rheology and past ice history, which reduces precision and accuracy in estimates of past GMSL. To better constrain the GIA process, we compare our data and existing LIG sea-level data across the Bahamian archipelago with a suite of 576 GIA model predictions. We calculated weights for each GIA model based on how well the model fits spatial trends in the regional sea-level data and then used the weighted GIA corrections to revise estimates of GMSL during the LIG. During the LIG, we find a 95% probability that global sea level peaked at least 1.2 m higher than today, and it is very unlikely (5% probability) to have exceeded 5.3 m. Estimates increase by up to 30% (decrease by up to 20%) for portions of melt that originate from the Greenland ice sheet (West Antarctic ice sheet). Altogether, this work suggests that LIG GMSL may be lower than previously assumed.

3.
Proc Natl Acad Sci U S A ; 116(18): 8740-8745, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30988182

RESUMO

The causal effects among uplift, climate, and continental weathering cannot be fully addressed using presently available geochemical proxies. However, stable potassium (K) isotopes can potentially overcome the limitations of existing isotopic proxies. Here we report on a systematic investigation of K isotopes in dissolved load and sediments from major rivers and their tributaries in China, which have drainage basins with varied climate, lithology, and topography. Our results show that during silicate weathering, heavy K isotopes are preferentially partitioned into aqueous solutions. Moreover, δ41K values of riverine dissolved load vary remarkably and correlate negatively with the chemical weathering intensity of the drainage basin. This correlation allows an estimate of the average K isotope composition of global riverine runoff (δ41K = -0.22‰), as well as modeling of the global K cycle based on mass balance calculations. Modeling incorporating K isotope mass balance better constrains estimated K fluxes for modern global K cycling, and the results show that the δ41K value of seawater is sensitive to continental weathering intensity changes. Thus, it is possible to use the δ41K record of paleo-seawater to infer continental weathering intensity through Earth's history.

5.
Proc Natl Acad Sci U S A ; 114(46): 12144-12149, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087331

RESUMO

As global climate warms and sea level rises, coastal areas will be subject to more frequent extreme flooding and hurricanes. Geologic evidence for extreme coastal storms during past warm periods has the potential to provide fundamental insights into their future intensity. Recent studies argue that during the Last Interglacial (MIS 5e, ∼128-116 ka) tropical and extratropical North Atlantic cyclones may have been more intense than at present, and may have produced waves larger than those observed historically. Such strong swells are inferred to have created a number of geologic features that can be observed today along the coastlines of Bermuda and the Bahamas. In this paper, we investigate the most iconic among these features: massive boulders atop a cliff in North Eleuthera, Bahamas. We combine geologic field surveys, wave models, and boulder transport equations to test the hypothesis that such boulders must have been emplaced by storms of greater-than-historical intensity. By contrast, our results suggest that with the higher relative sea level (RSL) estimated for the Bahamas during MIS 5e, boulders of this size could have been transported by waves generated by storms of historical intensity. Thus, while the megaboulders of Eleuthera cannot be used as geologic proof for past "superstorms," they do show that with rising sea levels, cliffs and coastal barriers will be subject to significantly greater erosional energy, even without changes in storm intensity.

6.
Nature ; 500(7461): 190-3, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925242

RESUMO

The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles.


Assuntos
Camada de Gelo , Modelos Teóricos , Dióxido de Carbono/química , Mudança Climática , América do Norte , Estações do Ano , Fatores de Tempo
7.
Nature ; 483(7390): 453-6, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22419155

RESUMO

Contentious observations of Pleistocene shoreline features on the tectonically stable islands of Bermuda and the Bahamas have suggested that sea level about 400,000 years ago was more than 20 metres higher than it is today. Geochronologic and geomorphic evidence indicates that these features formed during interglacial marine isotope stage (MIS) 11, an unusually long interval of warmth during the ice age. Previous work has advanced two divergent hypotheses for these shoreline features: first, significant melting of the East Antarctic Ice Sheet, in addition to the collapse of the West Antarctic Ice Sheet and the Greenland Ice Sheet; or second, emplacement by a mega-tsunami during MIS 11 (ref. 4, 5). Here we show that the elevations of these features are corrected downwards by ∼10 metres when we account for post-glacial crustal subsidence of these sites over the course of the anomalously long interglacial. On the basis of this correction, we estimate that eustatic sea level rose to ∼6-13 m above the present-day value in the second half of MIS 11. This suggests that both the Greenland Ice Sheet and the West Antarctic Ice Sheet collapsed during the protracted warm period while changes in the volume of the East Antarctic Ice Sheet were relatively minor, thereby resolving the long-standing controversy over the stability of the East Antarctic Ice Sheet during MIS 11.


Assuntos
Congelamento , Aquecimento Global/história , Camada de Gelo , Água do Mar/análise , Animais , Bahamas , Bermudas , Sedimentos Geológicos/análise , História Antiga
9.
Nature ; 456(7218): 85-8, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987740

RESUMO

The factors driving glacial changes in ocean overturning circulation are not well understood. On the basis of a comparison of 20 climate variables over the past four glacial cycles, the SPECMAP project proposed that summer insolation at high northern latitudes (that is, Milankovitch forcing) drives the same sequence of ocean circulation and other climate responses over 100-kyr eccentricity cycles, 41-kyr obliquity cycles and 23-kyr precession cycles. SPECMAP analysed the circulation response at only a few sites in the Atlantic Ocean, however, and the phase of circulation response has been shown to vary by site and orbital band. Here we test the SPECMAP hypothesis by measuring the phase of orbital responses in benthic delta(13)C (a proxy indicator of ocean nutrient content) at 24 sites throughout the Atlantic over the past 425 kyr. On the basis of delta(13)C responses at 3,000-4,010 m water depth, we find that maxima in Milankovitch forcing are associated with greater mid-depth overturning in the obliquity band but less overturning in the precession band. This suggests that Atlantic overturning is strongly sensitive to factors beyond ice volume and summer insolation at high northern latitudes. A better understanding of these processes could lead to improvements in model estimates of overturning rates, which range from a 40 per cent increase to a 40 per cent decrease at the Last Glacial Maximum and a 10-50 per cent decrease over the next 140 yr in response to projected increases in atmospheric CO(2) (ref. 4).


Assuntos
Clima , Movimentos da Água , Animais , Oceano Atlântico , Isótopos de Carbono , Temperatura Baixa , Células Eucarióticas/metabolismo , História Antiga , Camada de Gelo , Isótopos de Oxigênio , Estações do Ano
10.
Nature ; 448(7156): 912-6, 2007 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-17713531

RESUMO

The Milankovitch theory of climate change proposes that glacial-interglacial cycles are driven by changes in summer insolation at high northern latitudes. The timing of climate change in the Southern Hemisphere at glacial-interglacial transitions (which are known as terminations) relative to variations in summer insolation in the Northern Hemisphere is an important test of this hypothesis. So far, it has only been possible to apply this test to the most recent termination, because the dating uncertainty associated with older terminations is too large to allow phase relationships to be determined. Here we present a new chronology of Antarctic climate change over the past 360,000 years that is based on the ratio of oxygen to nitrogen molecules in air trapped in the Dome Fuji and Vostok ice cores. This ratio is a proxy for local summer insolation, and thus allows the chronology to be constructed by orbital tuning without the need to assume a lag between a climate record and an orbital parameter. The accuracy of the chronology allows us to examine the phase relationships between climate records from the ice cores and changes in insolation. Our results indicate that orbital-scale Antarctic climate change lags Northern Hemisphere insolation by a few millennia, and that the increases in Antarctic temperature and atmospheric carbon dioxide concentration during the last four terminations occurred within the rising phase of Northern Hemisphere summer insolation. These results support the Milankovitch theory that Northern Hemisphere summer insolation triggered the last four deglaciations.


Assuntos
Clima , Regiões Antárticas , Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono , Sedimentos Geológicos/química , Efeito Estufa , História Antiga , Camada de Gelo , Modelos Teóricos , Nitrogênio/análise , Oxigênio/análise , Isótopos de Oxigênio , Estações do Ano , Água do Mar/química , Fatores de Tempo
11.
Nat Commun ; 13(1): 5787, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184671

RESUMO

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.


Assuntos
Diatomáceas , Regiões Antárticas , DNA Antigo , Diatomáceas/genética , Ecossistema , Eucariotos , Sedimentos Geológicos
12.
Paleoceanogr Paleoclimatol ; 37(7): e2022PA004433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36247355

RESUMO

Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm-scale coarse-grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal-rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT-based analysis of the layer's in-situ fabric confirms its ice-rafted origin. We further infer that it is the product of an intense but short-lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic 40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to "dirty" icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366-m thick Pliocene and early Pleistocene sequence that is much more dropstone-rich than its overlying sediments. We speculate this fact may reflect that WAIS mass-balance was highly dynamic during the ∼41-kyr (inter)glacial world.

14.
Nat Ecol Evol ; 2(1): 81-85, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29203916

RESUMO

Food production dominates land, water and fertilizer use and is a greenhouse gas source. In the United States, beef production is the main agricultural resource user overall, as well as per kcal or g of protein. Here, we offer a possible, non-unique, definition of 'sustainable' beef as that subsisting exclusively on grass and by-products, and quantify its expected US production as a function of pastureland use. Assuming today's pastureland characteristics, all of the pastureland that US beef currently use can sustainably deliver ≈45% of current production. Rewilding this pastureland's less productive half (≈135 million ha) can still deliver ≈43% of current beef production. In all considered scenarios, the ≈32 million ha of high-quality cropland that beef currently use are reallocated for plant-based food production. These plant items deliver 2- to 20-fold more calories and protein than the replaced beef and increase the delivery of protective nutrients, but deliver no B12. Increased deployment of rapid rotational grazing or grassland multi-purposing may increase beef production capacity.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos , Carne/análise , Valor Nutritivo , Animais , Conservação dos Recursos Naturais , Pradaria , Humanos , Terminologia como Assunto , Estados Unidos
15.
Sci Rep ; 5: 12252, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193070

RESUMO

The early Pliocene shoaling of the Central American Seaway (CAS), ~4.7-4.2 million years ago (mega annum-Ma), is thought to have strengthened Atlantic Meridional Overturning Circulation (AMOC). The associated increase in northward flux of heat and moisture may have significantly influenced the evolution of Pliocene climate. While some evidence for the predicted increase in North Atlantic Deep Water (NADW) formation exists in the Caribbean and Western Atlantic, similar evidence is missing in the wider Atlantic. Here, we present stable carbon (δ(13)C) and oxygen (δ(18)O) isotope records from the Southeast Atlantic-a key region for monitoring the southern extent of NADW. Using these data, together with other δ(13)C and δ(18)O records from the Atlantic, we assess the impact of the early Pliocene CAS shoaling phase on deep-water circulation. We find that NADW formation was vigorous prior to 4.7 Ma and showed limited subsequent change. Hence, the overall structure of the deep Atlantic was largely unaffected by the early Pliocene CAS shoaling, corroborating other evidence that indicates larger changes in NADW resulted from earlier and deeper shoaling phases. This finding implies that the early Pliocene shoaling of the CAS had no profound impact on the evolution of climate.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa