Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(7): 53, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450063

RESUMO

To assure a smooth and cost-efficient flow of crude oil emulsion from wells to a production facility, the oil industry relies heavily on the prediction of viscosity in pipe. The physical expression of this viscosity depends on a subjective estimate of a maximum packing volume fraction (compacity), ranging between 58 and 74 vol%. This inaccurate practice can lead to catastrophic loss of pump efficiency. Two new concepts were defined to describe the emulsion: its compacity; and the occupancy of water droplets at the oil-water interface. This development leads to a better understanding of the formation and disappearance of a suspension, and can assist in building a reliable phenomenological model of the sedimentation and coalescence of an emulsion. Theoretical and experimental approaches were conducted to investigate the packing of water droplets in emulsions. A 3D packing model was developed to explain the observations made during emulsification experiments. It was found that below a water volume fraction of 34 vol%, water droplets settle, under the effect of gravity, in a loose-packed zone; and then sediment in a dense-packed zone (DPZ). The DPZ exists between a water volume fraction of 34 vol% and 60 vol%. The maximum compacity is the upper limit of this zone; and has a value of 60.46%. Knowing this objective value, other parameters affecting the viscosity can be better studied.


Assuntos
Petróleo , Emulsões , Água , Viscosidade
2.
Dalton Trans ; (42): 9153-6, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-20449191

RESUMO

The fixation of CO(2) at ambient temperature has been achieved by the reaction of Ni(cod)(2) and TMEDA in CO(2) saturated THF that yields a novel hexanuclear nickel(II) mu(3)-carbonato bridged complex [Ni(6)(mu(3)-CO(3))(4)(TMEDA)(6)(H(2)O)(12)](OH)(4) in 59% yield. The complex was characterised by MS analysis and the structure corroborated by single-crystal X-ray crystallography. The complex exhibits a rare carbonato binding mode for Ni(II) complexes and moderately strong antiferromagnetic interactions.


Assuntos
Carbono/química , Complexos de Coordenação/química , Níquel/química , Compostos Organometálicos/química , Dióxido de Carbono/química , Cristalografia por Raios X , Magnetismo , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa