RESUMO
PURPOSE: This study aims at chemotherapy and starvation therapy of HCC via starvation and apoptosis. METHODS: Hollow mesoporous organosilica nanoparticles (HMONs) with the thioether-hybrid structure were developed using an organic/inorganic co-templating assembly approach. Hydrofluoric acid was used to remove the internal MSN core for yielding large radial mesopores for loading drug cargos. The morphology and structure of NPs were determined using TEM and SEM. HMONs were stepwise surface modified with glucose oxidase (GOx), oxygen (O2) and Doxorubicin (DOX), and cancer cell membrane (CCM) for yielding CCM-coated HMONs (targeted stealth biorobots; TSBRs) for starvation, apoptotic, and enhanced cell uptake properties, respectively. The surface area and pore size distribution were determined via BET and BJH assays. The catalytic ability of GOx-modified NPs was measured using in vitro glucose conversion approach authenticated by H2O2 and pH determination assays. MTT assay was used to determine the cytotoxicities of NPs. Cell uptake and apoptotic assay were used for the NPs internalization and apoptosis mechanisms. The subcutaneous HepG2 tumor model was established in mice. The long-term in vivo toxicity was determined using blood assays. RESULTS: The prepared NPs were spherical, hollow and mesoporous with excellent surface area and pore size distribution. The GOx-modified NPs exhibited excellent catalytic activity. The TSBRs showed better cytotoxicity and reduce the tumor size and weight. The NPs showed long-term safety in vivo. CONCLUSION: TSBRs destroyed cancer cells by starvation and chemotherapy in both in-vitro and in-vivo settings which demonstrates its anti-cancer potential.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Dióxido de Silício/química , Peróxido de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas/química , Doxorrubicina/química , PorosidadeRESUMO
Cancers have always been the most difficult to fight, the treatment of cancer is still not considered. Thus, exploring new anticancer drugs is still imminent. Traditional Chinese medicine has played an important role in the treatment of cancer. Polyphenol oxidase (PPO) extracted from Edible mushroom has many related reports on its characteristics, but its role in cancer treatment is still unclear. This study aims to investigate the effects of PPO extracted from Edible mushroom on the proliferation, migration, invasion, and apoptosis of cancer cells in vitro and explore the therapeutic effects of PPO on tumors in vivo. A cell counting kit-8 (CCK8) assay was used to detect the effect of PPO on the proliferation of cancer cells. The effect of PPO on cancer cell migration ability was detected by scratch test. The effect of PPO on the invasion ability of cancer cells was detected by a transwell assay. The effect of PPO on the apoptosis of cancer cells was detected by flow cytometry. Female BALB/c mice (18-25 g, 6-8 weeks) were used for in vivo experiments. The experiments were divided into control group, model group, low-dose group (25 mg/kg), and high-dose group (50 mg/kg). In vitro, PPO extracted from Edible mushroom significantly inhibited the proliferation, migration, and invasion capability of breast cancer cell 4T1, lung cancer cell A549, and prostate cancer cell C4-2, and significantly promoted the apoptosis of 4T1, A549, and C4-2. In vivo experiments showed PPO inhibitory effect on tumor growth. Collectively, the edible fungus extract PPO could play an effective role in treating various cancers, and it may potentially be a promising agent for treating cancers.
Assuntos
Catecol OxidaseRESUMO
PURPOSE: Doxorubicin (Dox) being a hydrophobic drug needs a unique carrier for the effective encapsulation with uniformity in the aqueous dispersion, cell culture media and the biological-fluids that may efficiently target its release at the tumor site. METHODS: Circular DNA-nanotechnology was employed to synthesize DNA Nano-threads (DNA-NTs) by polymerization of triangular DNA-tiles. It involved circularizing a linear single-stranded scaffold strand to make sturdier and rigid triangles. DNA-NTs were characterized by the AFM and Native-PAGE tests. Dox binding and loading to the Neuregulin1 (NRG1) functionalized DNA based nano-threads (NF-DBNs) was estimated by the UV-shift analysis. The biocompatibility of the blank NRG-1/DNA-NTs and enhanced cytotoxicity of the NF-DBNs was assessed by the MTT assay. Cell proliferation/apoptosis was analyzed through the Flow-cytometry experiment. Cell-surface binding and the cell-internalization of the NF-DBNs was captured by the double-photon confocal microscopy (DPCM). RESULTS: The AFM images revealed uniform DNA-NTs with the diameter 30 to 80 nm and length 400 to 800 nm. PAGE native gel was used for the further confirmation of the successful assembly of the strands to synthesize DNA-NTs that gave one sharp band with the decreased electrophoretic mobility down the gel. MTT assay showed that blank DNA-NTs were biocompatible to the cells with less cytotoxicity even at elevated concentrations with most of the cells (94%) remaining alive compared to the dose-dependent enhanced cytotoxicity of NF-DBNs further evidenced by the Flow-cytometry analysis. CONCLUSION: Uniform and stiffer DNA-NTs for the potential applications in targeted drug delivery was achieved through circular DNA scaffolding.
Assuntos
Antibióticos Antineoplásicos/administração & dosagem , DNA Circular/química , Doxorrubicina/administração & dosagem , Portadores de Fármacos/síntese química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química , Receptor ErbB-3/metabolismo , Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Humanos , Ligantes , Microscopia de Força Atômica , Microscopia Confocal , Neuregulina-1/química , Propriedades de SuperfícieRESUMO
How triptolide is associated with mitochondrial dysfunction and apoptosis in connection with its hepatotoxicity remains unclear. The objective of our study was to find out the link between mitochondrial dynamics and cell death in triptolide induced hepatotoxicity. We treated L02 cells with 25 nM concentration of triptolide. The results demonstrated that triptolide treatment caused an increase in apoptotic cell death, mitochondrial depolarization, ROS overproduction, a decrease in ATP production, and mitochondrial fragmentation which in turn is associated with the activation of Drp1 fission protein. Triptolide treatment led to the translocation of Drp1 from the cytosol into outer mitochondrial membrane where it started mitochondrial fission. This fission event is coupled with the mitochondrial release of cytochrome c into the cytosol and subsequently caspase-3 activation. TEM analysis of rat liver tissues revealed the distortion of mitochondrial morphology in triptolide-treated group. Western blot analysis explained that disruption in mitochondrial morphology was attached with the recruitment of Drp1 to mitochondria, cytochrome c release, and caspase-3 activation. However, Mdivi-1 co-treatment inhibited the activation of Drp1 and caspase-3 and blocked the release of cytochrome c into the cytosol. In short, inhibiting Drp1 protein activation may provide a new potential target for curing Drp1-associated apoptosis in triptolide-induced hepatotoxicity.
Assuntos
Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Diterpenos/toxicidade , Dinaminas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Fenantrenos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Compostos de Epóxi/toxicidade , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Mitocôndrias Hepáticas/patologia , Ratos WistarRESUMO
Triptolide being an active ingredient of Chinese herbal plant Tripterygium wilfordii Hook f. has severe hepatotoxicity. Previous studies from our lab reported triptolide-induced mitochondrial toxicity in hepatocytes. However, biomolecular mechanisms involved in triptolide-induced mitochondrial dysfunction are not yet entirely clear. We explored the connection between mitochondrial fragmentation and mitophagy in triptolide-induced hepatotoxicity. Triptolide caused an increase in ROS production, a decrease in mitochondrial depolarization, a diminution of ATP generation, a decline in mitochondrial DNA copy number, mitochondrial fragmentation, and disturbance in mitochondrial dynamics in a concentration-dependent manner in L02 cells. Disturbance in mitochondrial dynamics was due to an increased expression of Drp1 fission protein in vitro and in vivo. L02 cells exhibited an increase in the colocalization of lysosomes with mitochondria and autophagosomes with mitochondria in triptolide treated group as compared to control group which was inhibited by Mdivi-1. Transmission electron micrographs of rat liver tissues treated with triptolide (400 µg/kg) revealed activation of mitophagy which was prevented by Mdivi-1 co-treatment. Taken together, our results showed that mitochondrial fission-associated mitophagy is a novel mechanism involved in triptolide-induced hepatotoxicity. For the alleviation of triptolide-induced hepatotoxicity, mitochondrial fission and mitochondrial autophagy signaling pathway can be targeted as a new therapeutic strategy. Graphical abstract á .
Assuntos
Dinaminas/metabolismo , Hepatócitos/metabolismo , Mitocôndrias/metabolismo , Animais , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Linhagem Celular , Diterpenos/toxicidade , Compostos de Epóxi/toxicidade , Feminino , Humanos , Fígado/citologia , Lisossomos/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Fenantrenos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
Fast dissolving oral film is a stamp-style, drug-loaded polymer film with rapid disintegration and dissolution. This new kind of drug delivery system requires effective taste masking technology. Suspension intermediate and liposome intermediate were prepared, respectively, for the formulation of two kinds of fast dissolving oral films with the aim of studying the effect of taste masking technology on the bioavailability of oral films. Loratadine was selected as the model drug. The surface pH of the films was close to neutral, avoiding oral mucosal irritation or side effects. The thickness of a 2 cm × 2 cm suspension oral film containing 10 mg of loratadine was 100 µm. Electron microscope analysis showed that liposomes were spherical before and after re-dissolution, and drugs with obvious bitterness could be masked by the encapsulation of liposomes. Dissolution of the two films was superior to that of the commercial tablets. Rat pharmacokinetic experiments showed that the oral bioavailability of the suspension film was significantly higher than that of the commercial tablets, and the relative bioavailability of the suspension film was 175%. Liposomal film produced a certain amount of improvement in bioavailability, but lower than that of the suspension film.
Assuntos
Polímeros/química , Paladar/fisiologia , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Concentração de Íons de Hidrogênio , Lipossomos , Loratadina/administração & dosagem , Loratadina/sangue , Loratadina/farmacocinética , Loratadina/farmacologia , Tamanho da Partícula , Ratos Sprague-Dawley , Espectroscopia de Infravermelho com Transformada de Fourier , Suspensões , Fatores de Tempo , Difração de Raios XRESUMO
Lung cancer is responsible for the death of over a million people worldwide every year. With its high mortality rate and exponentially growing number of new cases, lung cancer is a major threat to public health. The high mortality and poor survival rates of lung cancer patients can be attributed to its stealth progression and late diagnosis. For a long time, intrusive tissue biopsy has been considered the gold standard for lung cancer diagnosis and subtyping; however, the intrinsic limitations of tissue biopsy cannot be overlooked. In addition to being invasive and costly, it also suffers from limitations in sensitivity and specificity, is not suitable for repeated sampling, provides restricted information about the tumor and its molecular landscape, and is inaccessible in several cases. To cope with this, advancements in diagnostic technologies, such as liquid biopsy, have shown great prospects. Liquid biopsy is an innovative non-invasive approach in which cancer-related components called biomarkers are detected in body fluids, such as blood, urine, saliva and others. It offers a less invasive alternative with the potential for applications such as routine screening, predicting treatment outcomes, evaluating treatment effectiveness, detecting residual disease, or disease recurrence. A large number of research articles have indicated extracellular vesicles (EVs) as ideal biomarkers for liquid biopsy. EVs are a heterogeneous collection of membranous nanoparticles with diverse sizes, contents, and surface markers. EVs play a critical role in pathophysiological states and have gained prominence as diagnostic and prognostic biomarkers for multiple diseases, including lung cancer. In this review, we provide a detailed overview of the potential of EV-based liquid biopsy for lung cancer. Moreover, it highlights the strengths and weaknesses of various contemporary techniques for EV isolation and analysis in addition to the challenges that need to be addressed to ensure the widespread clinical application of EV-based liquid biopsies for lung cancer. In summary, EV-based liquid biopsies present interesting opportunities for the development of novel diagnostic and prognostic platforms for lung cancer, one of the most abundant cancers responsible for millions of cancer-related deaths worldwide.
RESUMO
Arsenic trioxide (ATO) has gained significant attention due to its promising therapeutic effects in treating different diseases, particularly acute promyelocytic leukemia (APL). Its potent anticancer mechanisms have been extensively studied. Despite the great efficacy ATO shows in fighting cancers, drawbacks in the clinical use are obvious, especially for solid tumors, which include rapid renal clearance and short half-life, severe adverse effects, and high toxicity to normal cells. Recently, the emergence of nanomedicine offers a potential solution to these limitations. The enhanced biocompatibility, excellent targeting capability, and desirable effectiveness have attracted much interest. Therefore, we summarized various nanocarriers for targeted delivery of ATO to solid tumors. We also provided detailed anticancer mechanisms of ATO in treating cancers, its clinical trials and shortcomings as well as the combination therapy of ATO and other chemotherapeutic agents for reduced drug resistance and synergistic effects. Finally, the future study direction and prospects were also presented.
Assuntos
Antineoplásicos , Trióxido de Arsênio , Portadores de Fármacos , Neoplasias , Trióxido de Arsênio/química , Trióxido de Arsênio/administração & dosagem , Trióxido de Arsênio/farmacologia , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Neoplasias/tratamento farmacológico , Nanopartículas/química , Animais , Sistemas de Liberação de MedicamentosRESUMO
Cancer immunotherapy remains a significant challenge due to insufficient proliferation of immune cells and the sturdy immunosuppressive tumor microenvironment. Herein, we proposed the hypothesis of cuproptosis-lactate regulation to provoke cuproptosis and enhance anti-tumor immunity. For this purpose, copper-human serum albumin nanocomplex loaded gold nanocages with bacterial membrane coating (BAu-CuNCs) were developed. The targeted delivery and disassembly of BAu-CuNCs in tumor cells initiated a cascade of reactions. Under near infrared (NIR) laser irradiation, the release of copper-human serum albumin (Cu-HSA) was enhanced that reacted with intratumoral glutathione (GSH) via a disulfide exchange reaction to liberate Cu2+ ions and exert cuproptosis. Subsequently, the cuproptosis effect triggered immunogenic cell death (ICD) in tumor by the release of damage associated molecular patterns (DAMPs) to realize anti-tumor immunity via robust production of cytotoxic T cells (CD8+) and helper T cells (CD4+). Meanwhile, under NIR irradiation, gold nanocages (AuNCs) promoted excessive reactive oxygen species (ROS) generation that played a primary role in inhibiting glycolysis, reducing the lactate and ATP level. The combine action of lower lactate level, ATP reduction and GSH depletion further sensitized the tumor cells to cuproptosis. Also, the lower lactate production led to the significant blockage of immunosuppressive T regulatory cells (Tregs) and boosted the anti-tumor immunity. Additionally, the effective inhibition of breast cancer metastasis to the lungs enhanced the anti-tumor therapeutic impact of BAu-CuNCs + NIR treatment. Hence, BAu-CuNCs + NIR concurrently induced cuproptosis, ICD and hindered lactate production, leading to the inhibition of tumor growth, remodeling of the immunosuppressive tumor microenvironment and suppression of lung metastasis. Therefore, leveraging cuproptosis-lactate regulation, this approach presents a novel strategy for enhanced tumor immunotherapy.
Assuntos
Cobre , Ouro , Imunoterapia , Ácido Láctico , Albumina Sérica Humana , Ouro/química , Cobre/química , Imunoterapia/métodos , Humanos , Animais , Albumina Sérica Humana/química , Albumina Sérica Humana/administração & dosagem , Ácido Láctico/química , Feminino , Neoplasias/terapia , Neoplasias/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Materiais Biomiméticos/química , Microambiente Tumoral , Espécies Reativas de Oxigênio/metabolismo , Glutationa/metabolismo , CamundongosRESUMO
Clerodendranthus spicatus (Thunb.) C.Y.Wu (CS) is a widely studied plant that shows potential in treating urinary diseases. Previous studies have focused on its chemical composition, pharmacological effects, and clinical applications. This review aims to provide a comprehensive summary and evaluation of the existing literature on CS. It also suggests future research directions to increase our understanding of its medicinal value. 129 pieces of literature were selected from several databases, including PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Wan-fang Database, and Google Scholar, and were analyzed. Forty-five active compounds of CS have pharmacological effects such as lowering uric acid, anti-inflammation, anti-oxidation, and kidney protection. The potential mechanisms of these effects may be related to inhibiting transforming growth factor ß1 (TGF-ß1) activation, reducing inflammatory factors such as IL-8, IL-1ß, TNF-α, PGE2, IFN-γ, and IL-6 levels, suppressing the activation of NF-κB, JAK/STAT pathway, enhancing the clearance of ROS, MDA DPPH·, and O2 Ì -, and regulating the expression of apoptosis-related pathways and proteins. This paper also discusses the quality control of CS and its efficacy and safety in treating urinary diseases. The study concludes that CS has a high potential for treating urinary diseases. Future studies should focus on observing the metabolic changes of CS active compounds in vivo and investigating the effects of CS on key signaling pathways. Additionally, more standardized and reasonable clinical studies and safety evaluation experiments should be conducted to obtain more clinical data.
Assuntos
Compostos Fitoquímicos , Doenças Urológicas , Humanos , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Doenças Urológicas/tratamento farmacológico , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologiaRESUMO
BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by destruction of synovial joints, abnormal immune responses and chronic inflammatory manifestations, which seriously affects patients' well-being. We explored this study to ascertain the effect and mechanism of silent information regulator 6 (SIRT6) on RA. METHODS: Genes of RA patients and normal volunteers were analyzed using Gene Expression Omnibus (GEO), Kyoto-Encyclopedia of Genes and Genomes (KEGG) and Disconet databases. Serum samples of RA patients and normal subjects were collected before detection of myeloid differentiation factor-88 (MyD88)-extracellular signal-regulated kinase (ERK) pathway proteins expression with Western blot. In vitro RA fibroblast-like synoviocytes (FLS) cell model (RA-FLS) was established by treating RSC-364 with recombinant rat IL-1ß (10 ng/mL) after which SIRT6 and MyD88 adenoviruses treatment was carried out. The enzyme linked immunoassay (ELISA), real time polymerase chain reaction (RT-PCR) and Western blot were respectively used to measure inflammatory factors, related messenger ribonucleic acid (mRNA) and protein expressions. Also, we constructed RA rat model with bovine type II collagen (BIIC) and complete Freund's adjuvant, before treatment with SIRT6 and MyD88 adenoviruses. RESULTS: Low expression of SIRT6 gene were detected in RA patients. Also, levels of MyD88, ERK and phosphorylated extracellular signal-regulated protein kinase (p-ERK) protein expressions in RA patients were increased, whilst that of SIRT6 protein decreased. Compared to FLS cells in Control group, inflammatory factors levels of rats in Model batch increased significantly. SIRT6 adenovirus treatment potentially and significantly inhibited inflammation including suppression of increased inflammatory factors induced by MyD88. In comparison with FLS cells in Control group, Model batch cells' MyD88, interleukin (IL)-1ß, IL-21, IL-22, IL-6, IL-17, tumor necrosis factor-alpha (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1) mRNA expressions increased but SIRT6 gene treatment could reduce mRNA expression of the aforesaid factors, even after MyD88 adenovirus treatment. Besides, overpressed SIRT6 negatively regulated levels of MyD88, ERK and p-ERK proteins expressions. SIRT6 demonstrated anti-RA effect by regulating MyD88-ERK pathway and inhibiting inflammatory response in RA rats. CONCLUSIONS: SIRT6 could potentially inhibit the inflammatory response of RA via a regulatory mechanism mainly relating to MyD88-ERK signal pathway. Thus, SIRT6 and its agonists may serve as new targets for developing drugs that can potentially treat RA.
Assuntos
Artrite Reumatoide , Sirtuínas , Humanos , Animais , Bovinos , Ratos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Artrite Reumatoide/genética , Transdução de Sinais , Inflamação/metabolismo , RNA Mensageiro/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Fibroblastos/metabolismo , Células CultivadasRESUMO
Extracellular vesicles (EVs) are vesicles with lipid bilayer structures shed from the plasma membrane of cells. Microvesicles (MVs) are a subset of EVs containing proteins, lipids, nucleic acids, and other metabolites. MVs can be produced under specific cell stimulation conditions and isolated by modern separation technology. Due to their tumor homing and large volume, tumor cell-derived microvesicles (TMVs) have attracted interest recently and become excellent delivery carriers for therapeutic vaccines, imaging agents or antitumor drugs. However, preparing sufficient and high-purity TMVs and conducting clinical transformation has become a challenge in this field. In this review, the recent research achievements in the generation, isolation, characterization, modification, and application of TMVs in cancer therapy are reviewed, and the challenges facing therapeutic applications are also highlighted.
Assuntos
Micropartículas Derivadas de Células , Vesículas Extracelulares , Neoplasias , Humanos , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , Vesículas Extracelulares/química , Neoplasias/tratamento farmacológico , Membrana CelularRESUMO
BACKGROUND: Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism. METHODS: The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels. RESULTS: Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1ß, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3. CONCLUSION: Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.
Assuntos
Chalcona/análogos & derivados , Colite Ulcerativa , Glucosídeos , Proteína HMGB1 , Humanos , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Caspase 3/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Proteína HMGB1/genética , Células CACO-2 , Lipopolissacarídeos , Transdução de Sinais/genética , NF-kappa B/metabolismo , Inflamação/tratamento farmacológico , Modelos Animais de DoençasRESUMO
INTRODUCTION: Esophageal-squamous Cell Carcinoma (ESCC) is often diagnosed at the middle or late stage, thus requiring more effective therapeutic strategies. Pharmacologically, the anti-tumor activity of the principal active constituent of Sophora flavescens, matrine (MA), has been explored widely. Notwithstanding, it is significant to nanotechnologically enhance the anti-tumor activity of MA in view of its potential to distribute non-tumor cells. METHODS: Herein, MA-loaded Nano-Liposomes (MNLs) were prepared to enhance the effect of anti-ESCC. The MNL showed a smaller sized particle (25.95 ± 1.02 nm) with a low polydispersed index (PDI = 0.130 ± 0.054), uniform spherical morphology, good solution stability, and encapsulated efficiency (65.55% ± 2.47). Furthermore, we determined the characteristics of KYSE-150 cells by cell viability assay, IC50, Mitochondrial Membrane Potential (MMP), Western blot, and apoptotic analysis, which indicated that MNLs down-regulated the cell viability and IC50 in a concentration-dependent manner and induced a significant change in JC-1 fluorescence from red to green. RESULTS: The above observations resulted in increased Bax and Caspase-3 levels, coupled with a substantial decrease in Bcl-2 and apoptotic promotion at the advanced stage compared with MA. CONCLUSION: Based on these results, MNLs may serve as a more effective and promising therapeutic option for ESCC.
Assuntos
Alcaloides , Apoptose , Sobrevivência Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Lipossomos , Matrinas , Quinolizinas , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/administração & dosagem , Quinolizinas/farmacologia , Quinolizinas/química , Quinolizinas/administração & dosagem , Humanos , Apoptose/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Lipossomos/química , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/patologia , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Nanopartículas/química , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tamanho da Partícula , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/isolamento & purificação , Células Tumorais Cultivadas , Relação Estrutura-AtividadeRESUMO
Neuroprotection is an important approach for the treatment of spinal cord injury (SCI). Minocycline (MC), a known neuroprotective agent, has been utilized for SCI treatment, but its therapeutic effect is limited by instability and low bioavailability. Herein, we developed an innovative micellar thermosensitive hydrogel (MCPP-M-gel) that encapsulates MC in polyethylene glycol (PEG)-poly(lactide-co-glycolic acid) (PLGA) micelles to enhance its therapeutic efficacy in a rat model of SCI. The micelles were synthesized via the thin-film hydration method and characterized for encapsulation efficiency, particle size, zeta potential, and polydispersity index (PDI). MCPP-M-gel demonstrated favorable physico-mechanical properties and extended MC release over 72 hours in vitro without cytotoxic effects on neural crest-derived ectoderm mesenchymal stem cells (EMSCs). Thereafter, MC, MCPP-M, MCPP-M-gel and a blank micellar thermosensitive gel were injected into the injured site of SCI rats. Histopathological evaluation demonstrated that MCPP-M-gel could promote neuronal regeneration at the injured site of the SC after 28 days. Immunofluorescence techniques revealed that MCPP-M-gel increased the expression of neuronal class III ß-tubulin (Tuj1), myelin basic protein (MBP), growth-associated protein 43 (GAP43), neurofilament protein-200 (NF-200) and nestin as well as reduced glial-fibrillary acidic protein (GFAP) expression in damaged areas of the SC. In conclusion, this study innovatively developed MCPP-M-gel based on a PEG-PLGA copolymer as a biomaterial, laying a solid foundation for further research and application of MCPP-M-gel in SCI models or other neurodegenerative diseases.
RESUMO
BACKGROUND: As a pentacyclic triterpenoid, OA (oleanolic acid) has exhibited antiinflammatory, immunomodulatory and antitumor effects. VEGFR-2 (vascular endothelial cells receptor-2) tyrosine kinase activity could be inhibited by apatinib, a small-molecule antiangiogenic agent. OBJECTIVE: Thus, this study sought to investigate the mechanism underlying the synergistic antitumor activity of combined OA and apatinib patent. METHODS: Through CCK8 (Cell counting kit 8 assay), flow cytometric and western blotting techniques, we conducted in vitro studies on apatinib and OA effects on cell proliferation and apoptosis in H22 cell line. H22 tumor-burdened mice model was established in vivo, while the related signaling pathways were studied via pathological examination, western blotting and qPCR (quantitative polymerase chain reaction). RESULTS: Growth of H22 cells in vitro and in vivo could be inhibited effectively by apatinib and OA. Thus, OA repaired liver function and inhibited oxidative stress induced by apatinib. CONCLUSION: OA can treat apatinib induced liver injury in H22 Tumor-burdened mice by enhancing the suppresssive effect of apatinib on the growth of tumor.
Assuntos
Neoplasias Hepáticas , Ácido Oleanólico , Piridinas , Humanos , Animais , Camundongos , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Patentes como Assunto , Proliferação de Células , Neoplasias Hepáticas/patologiaRESUMO
BACKGROUND: Nicosulfuron, a widely used herbicide in crops, has raised concerns due to its escalating presence as an environmental pollutant, particularly in soil and water. The potential adverse effects of nicosulfuron on animals, including reproductive toxicity, have garnered attention. OBJECTIVE: The study aimed to evaluate the reproductive toxicity of nicosulfuron in male mice. METHODS: Male mice were orally administrated with three different concentration gradients (350, 700, and 1400 mg/kg) of nicosulfuron for 35 days. The investigation delved into sperm quality, testicular structures, and expression of cleaved caspase-3 and NF-κB p65 of the testes. RESULTS: The finding unveiled a correlation between nicosulfuron exposure and detrimental effects on sperm quality and alteration of testicular structure. Notably, parameters, such as sperm survival rate (SUR) and sperm motility (MOT), exhibited a decline in relation to increasing nicosulfuron dosages. Moreover, in the mice subjected to higher doses of nicosulfuron, elevated expression of cleaved caspase-3 and NF-κB p65 was observed in the testes. Interestingly, we also observed an increase of NF-κB p65 expression in the mice exposed to the nicosulfuron. CONCLUSION: Our research revealed that exposure to nicosulfuron resulted in compromised sperm quality and alterations in testicular structure. The correlation between nicosulfuron and apoptosis, especially via the NF-κB pathway, provided significant insights into the mechanisms underpinning these detrimental effects. These findings significantly enhance our comprehension of the potential hazards associated with nicosulfuron exposure and its impacts on the reproductive health of animals.
Assuntos
NF-kappa B , Piridinas , Compostos de Sulfonilureia , Testículo , Masculino , Camundongos , Animais , NF-kappa B/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Estresse Oxidativo , Motilidade dos Espermatozoides , Sêmen/metabolismo , Espermatozoides/metabolismo , Transdução de Sinais , ApoptoseRESUMO
BACKGROUND: Severe neurological condition like Alzheimer's disease (AD) has a significantly negative impact on families and society, wherein there is no proven cure. As one of the principal active constituents of Achyranthes bidentata Blume, ecdysterone (ECR) has demonstrated antioxidant and cognitive dysfunction improvement effects. Nonetheless, the mechanism underlying the improvement of cognitive dysfunction by ECR remains unclear. This study sought to ascertain whether ECR may allebviate cognitive impairment by reducing oxidative stress via activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) antioxidant system through Akt/GSK3ß pathway. METHODS: In terms of the experimental procedure, we determined the neuroprotective benefits of ECR in vivo via a cognitive impairment model of senescence-accelerated mouse prone 8 (SAMP8), we performed procedures such as behavioral testing, biochemical assaying, Nissl and TUNEL stainings, as well as flow cytometry, immunohistochemistry and western blotting. Furthermore, we investigated the underlying mechanistic action of ECR by activating PC12 cells with ß-amyloid peptide fragment 25-35 (Aß25-35). RESULTS: In vivo studies showed that ECR effectively improved cognitive impairment in SAMP8 via enhancement of learning and memory capabilities, but decreased oxidative stress, apoptosis and neuronal damage in the hippocampus. During the in vitro study, we observed that ECR dose-dependently reduced the oxidative stress and apoptosis that were induced in PC12 cells by Aß25-35. Additionally, the use of Akt inhibitors further established the potential of ECR to control Nrf2 through activation of the Akt/GSK3ß pathway and protect the PC12 cells from Aß25-35 induced damage. CONCLUSIONS: These findings offer proof that ECR reduces cognitive impairment by triggering the Nrf2 antioxidant system via the Akt/GSK3ß pathway and offer fresh information on ECR's potential as a promising therapeutic development candidate for AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fármacos Neuroprotetores , Humanos , Ratos , Camundongos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Antioxidantes/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Ecdisterona/farmacologia , Ecdisterona/uso terapêutico , Estresse Oxidativo , Transdução de Sinais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêuticoRESUMO
Diabetic neuropathic pain (DNP) is a common, complex, and severe complication of diabetes. It can lead to increased mortality, lower-limb amputations, and distressing neuropathic symptoms. Available therapies for DNP are broad-spectrum analgesics, related to various side effects. Transient receptor potential vanilloid-1 (TRPV1) is widely expressed within the peripheral and central nervous systems and plays an essential role in pain perception and regulation. Both TRPV1 agonists and antagonists could reduce the sensitivity to nociception. Some exhibit blood glucose homeostasis regulates function by influencing insulin secretion and receptor sensitivity. Since TRPV1 has exhibited the unique advantages of simultaneously managing blood sugar and pain, developing new TRPV1 channel modulators for diabetes-related pain syndrome is a promising alternative to conventional therapy. In this review, the role of TRPV1 in the pathogenesis of DNP has been described and challenges of TRPV1 modulators have been explored to be a new therapy for DNP.
Assuntos
Antineoplásicos , Diabetes Mellitus , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neuralgia , Canais de Potencial de Receptor Transitório , Humanos , Glicemia , Neuralgia/tratamento farmacológico , Canais de Cátion TRPVRESUMO
Liver cancer (LC), one of the most common malignant primary tumors, presents a poor prognosis, high morbidity rate, and poor clinical outcomes. Despite conventional treatments have been applied prior to the deterioration, their clinical benefits were still limited. Arsenic trioxide (ATO), a toxic Chinese medicine, has been proven to efficiently inhibit the growth of LC both in vitro and in vivo. However, its therapeutic effects are hindered by poor pharmacokinetics and dose-limited toxicity. In this study, we developed a pH-responsive nanoplatform (PEG-MSN@ATO) consisting of mesoporous silica nanoparticles (MSN) that were modified with amino groups, loaded with ATO, and grafted with PEG to achieve the pH-triggered release and regulate CD8+ T cells and Treg cells in the tumor microenvironment (TME). PEG-MSN@ATO were characterized by uniform size, good loading efficiency, pH-responsive release features, decreased macrophage uptake, and enhanced dendritic cell activation in vitro. Furthermore, in vivo studies demonstrated that PEG-MSN@ATO enhanced the antitumor efficacy by inducing apoptosis and ROS production, inhibiting tumor cell proliferation and metastasis, and activating antitumor immunity within the TME. PEG-MSN@ATO also reduced the system toxicity of ATO by controlling the pH-trigger release in the tumor site. These results indicate that the PEG-MSN@ATO represents a promising drug delivery platform for reducing toxicity and enhancing the therapeutic efficacy of ATO against LC.