Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
PLoS Genet ; 19(12): e1011086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38134220

RESUMO

Structural differences between genomes are a major source of genetic variation that contributes to phenotypic differences. Transposable elements, mobile genetic sequences capable of increasing their copy number and propagating themselves within genomes, can generate structural variation. However, their repetitive nature makes it difficult to characterize fine-scale differences in their presence at specific positions, limiting our understanding of their impact on genome variation. Domesticated maize is a particularly good system for exploring the impact of transposable element proliferation as over 70% of the genome is annotated as transposable elements. High-quality transposable element annotations were recently generated for de novo genome assemblies of 26 diverse inbred maize lines. We generated base-pair resolved pairwise alignments between the B73 maize reference genome and the remaining 25 inbred maize line assemblies. From this data, we classified transposable elements as either shared or polymorphic in a given pairwise comparison. Our analysis uncovered substantial structural variation between lines, representing both simple and complex connections between TEs and structural variants. Putative insertions in SNP depleted regions, which represent recently diverged identity by state blocks, suggest some TE families may still be active. However, our analysis reveals that within these recently diverged genomic regions, deletions of transposable elements likely account for more structural variation events and base pairs than insertions. These deletions are often large structural variants containing multiple transposable elements. Combined, our results highlight how transposable elements contribute to structural variation and demonstrate that deletion events are a major contributor to genomic differences.


Assuntos
Elementos de DNA Transponíveis , Zea mays , Humanos , Elementos de DNA Transponíveis/genética , Zea mays/genética , Genômica
2.
PLoS Biol ; 20(9): e3001804, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36149891

RESUMO

Following the initiation of the unprecedented global vaccination campaign against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), attention has now turned to the potential impact of this large-scale intervention on the evolution of the virus. In this Essay, we summarize what is currently known about pathogen evolution in the context of immune priming (including vaccination) from research on other pathogen species, with an eye towards the future evolution of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/prevenção & controle , Humanos , Programas de Imunização , Vacinação
3.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35536868

RESUMO

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Animais Selvagens , Austrália/epidemiologia , Aves , Patos , Variação Genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia
4.
PLoS Biol ; 19(11): e3001409, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34784349

RESUMO

Humans are altering biological systems at unprecedented rates, and these alterations often have longer-term evolutionary impacts. Most obvious is the spread of resistance to pesticides and antibiotics. There are a wide variety of management strategies available to slow this evolution, and there are many reasons for using them. In this paper, we focus on the economic aspects of evolution management and ask: When is it economically beneficial for an individual decision-maker to invest in evolution management? We derive a simple dimensionless inequality showing that it is cost-effective to manage evolution when the percentage increase in the effective life span of the biological resource that management generates is larger than the percentage increase in annual profit that could be obtained by not managing evolution. We show how this inequality can be used to determine optimal investment choices for single decision-makers, to determine Nash equilibrium investment choices for multiple interacting decision-makers, and to examine how these equilibrium choices respond to regulatory interventions aimed at stimulating investment in evolution management. Our results are illustrated with examples involving Bacillus thuringiensis (Bt) crops and antibiotic use in fish farming.


Assuntos
Evolução Biológica , Bacillus thuringiensis , Modelos Biológicos , Plantas Geneticamente Modificadas , Zea mays/genética
5.
Plant J ; 111(1): 103-116, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35436373

RESUMO

The DOMAINS REARRANGED METHYLTRANSFERASEs (DRMs) are crucial for RNA-directed DNA methylation (RdDM) in plant species. Setaria viridis is a model monocot species with a relatively compact genome that has limited transposable element (TE) content. CRISPR-based genome editing approaches were used to create loss-of-function alleles for the two putative functional DRM genes in S. viridis to probe the role of RdDM. Double mutant (drm1ab) plants exhibit some morphological abnormalities but are fully viable. Whole-genome methylation profiling provided evidence for the widespread loss of methylation in CHH sequence contexts, particularly in regions with high CHH methylation in wild-type plants. Evidence was also found for the locus-specific loss of CG and CHG methylation, even in some regions that lack CHH methylation. Transcriptome profiling identified genes with altered expression in the drm1ab mutants. However, the majority of genes with high levels of CHH methylation directly surrounding the transcription start site or in nearby promoter regions in wild-type plants do not have altered expression in the drm1ab mutant, even when this methylation is lost, suggesting limited regulation of gene expression by RdDM. Detailed analysis of the expression of TEs identified several transposons that are transcriptionally activated in drm1ab mutants. These transposons are likely to require active RdDM for the maintenance of transcriptional repression.


Assuntos
Setaria (Planta) , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Metiltransferases/genética , Setaria (Planta)/genética , Transcriptoma
6.
J Virol ; 96(20): e0088622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36197107

RESUMO

To characterize the ongoing evolution of myxoma virus in Australian rabbits, we used experimental infections of laboratory rabbits to determine the virulence and disease phenotypes of recent virus isolates. The viruses, collected between 2012 and 2015, fell into three lineages, one of which, lineage c, experienced a punctuated increase in evolutionary rate. All viruses were capable of causing acute death with aspects of neutropenic septicemia, characterized by minimal signs of myxomatosis, the occurrence of pulmonary edema and bacteria invasions throughout internal organs, but with no inflammatory response. For the viruses of highest virulence all rabbits usually died at this point. In more attenuated viruses, some rabbits died acutely, while others developed an amyxomatous phenotype. Rabbits that survived for longer periods developed greatly swollen cutaneous tissues with very high virus titers. This was particularly true of lineage c viruses. Unexpectedly, we identified a line of laboratory rabbits with some innate resistance to myxomatosis and used these in direct comparisons with the fully susceptible rabbit line. Importantly, the same disease phenotype occurred in both susceptible and resistant rabbits, although virulence was shifted toward more attenuated grades in resistant animals. We propose that selection against inflammation at cutaneous sites prolongs virus replication and enhances transmission, leading to the amyxomatous phenotype. In some virus backgrounds this creates an immunosuppressive state that predisposes to high virulence and acute death. The alterations in disease pathogenesis, particularly the overwhelming bacterial invasions that characterize the modern viruses, suggest that their virulence grades are not directly comparable with earlier studies. IMPORTANCE The evolution of the myxoma virus (MYXV) following its release as a biological control for European rabbits in Australia is the textbook example of the coevolution of virus virulence and host resistance. However, most of our knowledge of MYXV evolution only covers the first few decades of its spread in Australia and often with little direct connection between how changes in virus phenotype relate to those in the underlying virus genotype. By conducting detailed experimental infections of recent isolates of MYXV in different lines of laboratory rabbits, we examined the ongoing evolution of MYXV disease phenotypes. Our results reveal a wide range of phenotypes, including an amyxomatous type, as well as the impact of invasive bacteria, that in part depended on the level of rabbit host resistance. These results provide a unique insight into the complex virus and host factors that combine to shape disease phenotype and viral evolution.


Assuntos
Myxoma virus , Mixomatose Infecciosa , Animais , Coelhos , Virulência/genética , Austrália , Fenótipo , Genótipo , Mixomatose Infecciosa/genética
7.
Glob Chang Biol ; 29(8): 2108-2121, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36644792

RESUMO

The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013-2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.


Assuntos
Euphausiacea , Jubarte , Animais , Humanos , Regiões Antárticas , Clima , Ecossistema , Dinâmica Populacional , Camada de Gelo
8.
PLoS Biol ; 18(11): e3001000, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33166303

RESUMO

Although less common than the evolution of antimicrobial drug resistance, vaccine resistance can and has evolved. How likely is it that COVID-19 vaccines currently in development will be undermined by viral evolution? We argue that this can be determined by repurposing samples that are already being collected as part of clinical trials. Such information would be useful for prioritizing investment among candidate vaccines and maximizing the potential long-term impact of COVID-19 vaccines.


Assuntos
Betacoronavirus/imunologia , Ensaios Clínicos como Assunto , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Farmacorresistência Viral/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Vacinas Virais/imunologia , COVID-19 , Vacinas contra COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias , Fatores de Risco , SARS-CoV-2
9.
PLoS Biol ; 18(5): e3000713, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413038

RESUMO

Standard infectious disease practice calls for aggressive drug treatment that rapidly eliminates the pathogen population before resistance can emerge. When resistance is absent, this elimination strategy can lead to complete cure. However, when resistance is already present, removing drug-sensitive cells as quickly as possible removes competitive barriers that may slow the growth of resistant cells. In contrast to the elimination strategy, a containment strategy aims to maintain the maximum tolerable number of pathogens, exploiting competitive suppression to achieve chronic control. Here, we combine in vitro experiments in computer-controlled bioreactors with mathematical modeling to investigate whether containment strategies can delay failure of antibiotic treatment regimens. To do so, we measured the "escape time" required for drug-resistant Escherichia coli populations to eclipse a threshold density maintained by adaptive antibiotic dosing. Populations containing only resistant cells rapidly escape the threshold density, but we found that matched resistant populations that also contain the maximum possible number of sensitive cells could be contained for significantly longer. The increase in escape time occurs only when the threshold density-the acceptable bacterial burden-is sufficiently high, an effect that mathematical models attribute to increased competition. The findings provide decisive experimental confirmation that maintaining the maximum number of sensitive cells can be used to contain resistance when the size of the population is sufficiently large.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana , Interações Microbianas , Modelos Biológicos , Infecções Bacterianas/tratamento farmacológico , Reatores Biológicos , Contenção de Riscos Biológicos , Escherichia coli , Humanos
10.
PLoS Biol ; 18(12): e3000987, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332354

RESUMO

The antimicrobial resistance crisis has persisted despite broad attempts at intervention. It has been proposed that an important driver of resistance is selection imposed on bacterial populations that are not the intended target of antimicrobial therapy. But to date, there has been limited quantitative measure of the mean and variance of resistance following antibiotic exposure. Here we focus on the important nosocomial pathogen Enterococcus faecium in a hospital system where resistance to daptomycin is evolving despite standard interventions. We hypothesized that the intravenous use of daptomycin generates off-target selection for resistance in transmissible gastrointestinal (carriage) populations of E. faecium. We performed a cohort study in which the daptomycin resistance of E. faecium isolated from rectal swabs from daptomycin-exposed patients was compared to a control group of patients exposed to linezolid, a drug with similar indications. In the daptomycin-exposed group, daptomycin resistance of E. faecium from the off-target population was on average 50% higher than resistance in the control group (n = 428 clones from 22 patients). There was also greater phenotypic diversity in daptomycin resistance within daptomycin-exposed patients. In patients where multiple samples over time were available, a wide variability in temporal dynamics were observed, from long-term maintenance of resistance to rapid return to sensitivity after daptomycin treatment stopped. Sequencing of isolates from a subset of patients supports the argument that selection occurs within patients. Our results demonstrate that off-target gastrointestinal populations rapidly respond to intravenous antibiotic exposure. Focusing on the off-target evolutionary dynamics may offer novel avenues to slow the spread of antibiotic resistance.


Assuntos
Daptomicina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Adulto , Antibacterianos/uso terapêutico , Estudos de Coortes , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/metabolismo , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Filogenia , Vancomicina/farmacologia , Enterococos Resistentes à Vancomicina/metabolismo
11.
PLoS Genet ; 16(1): e1008571, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986137

RESUMO

Long-read sequencing facilitates assembly of complex genomic regions. In plants, loci containing nucleotide-binding, leucine-rich repeat (NLR) disease resistance genes are an important example of such regions. NLR genes constitute one of the largest gene families in plants and are often clustered, evolving via duplication, contraction, and transposition. We recently mapped the Xo1 locus for resistance to bacterial blight and bacterial leaf streak, found in the American heirloom rice variety Carolina Gold Select, to a region that in the Nipponbare reference genome is NLR gene-rich. Here, toward identification of the Xo1 gene, we combined Nanopore and Illumina reads and generated a high-quality Carolina Gold Select genome assembly. We identified 529 complete or partial NLR genes and discovered, relative to Nipponbare, an expansion of NLR genes at the Xo1 locus. One of these has high sequence similarity to the cloned, functionally similar Xa1 gene. Both harbor an integrated zfBED domain, and the repeats within each protein are nearly perfect. Across diverse Oryzeae, we identified two sub-clades of NLR genes with these features, varying in the presence of the zfBED domain and the number of repeats. The Carolina Gold Select genome assembly also uncovered at the Xo1 locus a rice blast resistance gene and a gene encoding a polyphenol oxidase (PPO). PPO activity has been used as a marker for blast resistance at the locus in some varieties; however, the Carolina Gold Select sequence revealed a loss-of-function mutation in the PPO gene that breaks this association. Our results demonstrate that whole genome sequencing combining Nanopore and Illumina reads effectively resolves NLR gene loci. Our identification of an Xo1 candidate is an important step toward mechanistic characterization, including the role(s) of the zfBED domain. Finally, the Carolina Gold Select genome assembly will facilitate identification of other useful traits in this historically important variety.


Assuntos
Resistência à Doença , Proteínas NLR/genética , Oryza/genética , Proteínas de Plantas/genética , Anotação de Sequência Molecular , Proteínas NLR/química , Proteínas NLR/metabolismo , Sequenciamento por Nanoporos/métodos , Oryza/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequenciamento Completo do Genoma/métodos , Dedos de Zinco
12.
J Exp Biol ; 225(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35014667

RESUMO

Estimates of the energetic costs of locomotion (COL) at different activity levels are necessary to answer fundamental eco-physiological questions and to understand the impacts of anthropogenic disturbance to marine mammals. We combined estimates of energetic costs derived from breath-by-breath respirometry with measurements of overall dynamic body acceleration (ODBA) from biologging tags to validate ODBA as a proxy for COL in trained common bottlenose dolphins (Tursiops truncatus). We measured resting metabolic rate (RMR); mean individual RMR was 0.71-1.42 times that of a similarly sized terrestrial mammal and agreed with past measurements that used breath-by-breath and flow-through respirometry. We also measured energy expenditure during submerged swim trials, at primarily moderate exercise levels. We subtracted RMR to obtain COL, and normalized COL by body size to incorporate individual swimming efficiencies. We found both mass-specific energy expenditure and mass-specific COL were linearly related with ODBA. Measurements of activity level and cost of transport (the energy required to move a given distance) improve understanding of the COL in marine mammals. The strength of the correlation between ODBA and COL varied among individuals, but the overall relationship can be used at a broad scale to estimate the energetic costs of disturbance and daily locomotion costs to build energy budgets, and investigate the costs of diving in free-ranging animals where bio-logging data are available. We propose that a similar approach could be applied to other cetacean species.


Assuntos
Golfinho Nariz-de-Garrafa , Mergulho , Aceleração , Animais , Golfinho Nariz-de-Garrafa/fisiologia , Mergulho/fisiologia , Metabolismo Energético , Natação/fisiologia
13.
Dig Dis Sci ; 67(7): 2827-2841, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34169434

RESUMO

BACKGROUND: Inadequate bowel preparation undermines the quality of colonoscopy, but patients likely to be affected are difficult to identify beforehand. AIMS: This study aimed to develop, validate, and compare prediction models for bowel preparation inadequacy using conventional logistic regression (LR) and random forest machine learning (RFML). METHODS: We created a retrospective cohort of patients who underwent outpatient colonoscopy at a single VA medical center between January 2012 and October 2015. Candidate predictor variables were chosen after a literature review. We extracted all available predictor variables from the electronic medical record, and bowel preparation from the endoscopy database. The data were split into 70% training and 30% validation sets. Multivariable LR and RFML were used to predict preparation inadequacy as a dichotomous outcome. RESULTS: The cohort included 6,885 Veterans, of whom 964 (14%) had inadequate preparation. Using LR, the area under the receiver operating characteristic curve (AUC) for the validation cohort was 0.66 (95% CI 0.62, 0.69) and the Brier score, in which a lower score indicates better performance, was 0.11. Using RFML, the AUC for the validation cohort was 0.61 (95% CI 0.58, 0.65) and the Brier score was 0.12. CONCLUSIONS: LR and RFML had similar performance in predicting bowel preparation, which was modest and likely insufficient for use in practice. Future research is needed to identify additional predictor variables and to test other machine learning algorithms. At present, endoscopy units should focus on universal strategies to enhance preparation adequacy.


Assuntos
Veteranos , Humanos , Modelos Logísticos , Aprendizado de Máquina , Estudos Retrospectivos , Medição de Risco
14.
BMC Health Serv Res ; 22(1): 425, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361221

RESUMO

BACKGROUND: Video capsule endoscopy (VCE), approved by the U.S. Food and Drug Administration (FDA) in 2001, represented a disruptive technology that transformed evaluation of the small intestine. Adoption of this technology over time and current use within the U.S. clinical population has not been well described. METHODS: To assess the growth of capsule endoscopy within the U.S. Medicare provider population (absolute growth and on a population-adjusted basis), characterize the providers performing VCE, and describe potential regional differences in use. Medicare summary data from 2003 to 2019 were used to retrospectively analyze capsule endoscopy use in a multiple cross-sectional design. In addition, detailed provider summary files were used from 2012 to 2018 to characterize provider demographics. RESULTS: VCE use grew rapidly from 2003 to 2008 followed by a plateau from 2008 to 2019. There was significant variation in use of VCE between states, with up to 10-fold variation between states (14.6 to 156.1 per 100,000 enrollees in 2018). During this time, the adjusted VCE use on a population-adjusted basis declined, reflecting saturation of growth. CONCLUSIONS: Growth of VCE use over time follows an S-shaped diffusion of innovation curve demonstrating a successful diffusion of innovation within gastroenterology. The lack of additional growth since 2008 suggests that current levels of use are well matched to overall population need within the constraints of reimbursement. Future studies should examine whether this lack of growth has implications for access and healthcare inequities.


Assuntos
Endoscopia por Cápsula , Idoso , Estudos Transversais , Humanos , Intestino Delgado , Medicare , Estudos Retrospectivos , Estados Unidos
15.
Proc Natl Acad Sci U S A ; 116(44): 22386-22392, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31615885

RESUMO

Hosts defend themselves against pathogens by mounting an immune response. Fully understanding the immune response as a driver of host disease and pathogen evolution requires a quantitative account of its impact on parasite population dynamics. Here, we use a data-driven modeling approach to quantify the birth and death processes underlying the dynamics of infections of the rodent malaria parasite, Plasmodium chabaudi, and the red blood cells (RBCs) it targets. We decompose the immune response into 3 components, each with a distinct effect on parasite and RBC vital rates, and quantify the relative contribution of each component to host disease and parasite density. Our analysis suggests that these components are deployed in a coordinated fashion to realize distinct resource-directed defense strategies that complement the killing of parasitized cells. Early in the infection, the host deploys a strategy reminiscent of siege and scorched-earth tactics, in which it both destroys RBCs and restricts their supply. Late in the infection, a "juvenilization" strategy, in which turnover of RBCs is accelerated, allows the host to recover from anemia while holding parasite proliferation at bay. By quantifying the impact of immunity on both parasite fitness and host disease, we reveal that phenomena often interpreted as immunopathology may in fact be beneficial to the host. Finally, we show that, across mice, the components of the host response are consistently related to each other, even when infections take qualitatively different trajectories. This suggests the existence of simple rules that govern the immune system's deployment.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Malária/imunologia , Plasmodium chabaudi/patogenicidade , Reticulócitos/parasitologia , Animais , Longevidade , Merozoítos/fisiologia , Camundongos , Modelos Teóricos , Plasmodium chabaudi/imunologia , Reticulócitos/imunologia
16.
Clin Gastroenterol Hepatol ; 19(9): 1973-1975.e1, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32871285

RESUMO

Recent data have shown increasing incidence of colorectal cancer (CRC) among those younger than 50 years of age.1,2 In response, the American Cancer Society (ACS) introduced new guidelines in May 2018 that recommend initiation of CRC screening in average-risk adults at age 45, which is 5 years earlier than existing recommendations from the US Preventive Services Task Force and US Multi-Society Task Force on Colorectal Cancer.3-5 Most screening colonoscopies are ordered directly by primary care providers (PCPs) via "direct" or "open.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Adulto , American Cancer Society , Pré-Escolar , Colonoscopia , Neoplasias Colorretais/diagnóstico , Humanos , Programas de Rastreamento , Pessoa de Meia-Idade , Atenção Primária à Saúde , Estados Unidos
17.
Conserv Biol ; 35(4): 1120-1129, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33270279

RESUMO

The illegal harvest of marine species within exclusive economic zones can have a strong impact on the function of local ecosystems and livelihoods of coastal communities. The complexity of these problems is often overlooked in the development of solutions, leading to ineffective and sometimes harmful social and environmental outcomes. One-dimensional, oversimplified perspectives can lead to conservation prescriptions that exacerbate social stressors. This is particularly critical in the case of international illegal trade of endangered, high-value species, which generate a value chain in which artisanal fishers are the first operational and often the weakest link of an intricate web. We examined 2 illegal fisheries, totoaba (Totoaba macdonaldi) and sea cucumber (Isostichopus badionotus and Holothuria floridana), in Mexico. Although these are 2 separate and independent fisheries, important ecological (resource condition, fishery impacts at the ecosystem level) and social (governance, markets) similarities improve understanding of their complexity. Our findings are relevant globally and show the need for interdisciplinary decision-making groups, community engagement, and the development of demand reduction measures.


Pesquerías Ilegales, Crímenes Ambientales y la Conservación de los Recursos Marinos Resumen La cosecha ilegal de especies marinas dentro de las zonas económicas exclusivas puede tener un impacto serio sobre la función de los ecosistemas locales y el economia de las comunidades costeras. La complejidad de estos problemas generalmente se ignora durante el desarrollo de soluciones, lo que conlleva a resultados ambientales y sociales poco efectivos y algunas veces dañinos. Las perspectivas unidimensionales y sobresimplificadas pueden derivar en prescripciones de conservación que empeoran las condiciones sociales sociales. Lo anterior es particularmente crítico para el caso del mercado ilegal de especies en peligro y de alto valor, lo que genera una cadena de valores en la que los pescadores tradicionales son el primer eslabón operativo y con frecuencia el más débil de una red intrincada. Examinamos dos pesquerías ilegales, la de la totoaba (Totoaba macdonaldi) y la del pepino de mar (Isostichopus badionotus y Holothuria floridana), en México. Aunque estas dos pesquerías son diferentes e independientes, las importantes similitudes ecológicas (estado del recurso, impactos de la pesquería a nivel de ecosistema) y sociales (governancia, mercados) mejoran el conocimiento de su complejidad. Nuestros hallazgos son relevantes a escala global y muestran la necesidad de tener grupos interdisciplinarios para tomar decisiones, la participación de la comunidad y el desarrollo de medidas para reducir la demanda por el producto pesquero.


Assuntos
Ecossistema , Pesqueiros , Conservação dos Recursos Naturais , Crime , México
18.
Proc Natl Acad Sci U S A ; 115(51): 12878-12886, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30559199

RESUMO

Vaccines and antimicrobial drugs both impose strong selection for resistance. Yet only drug resistance is a major challenge for 21st century medicine. Why is drug resistance ubiquitous and not vaccine resistance? Part of the answer is that vaccine resistance is far less likely to evolve than drug resistance. But what happens when vaccine resistance does evolve? We review six putative cases. We find that in contrast to drug resistance, vaccine resistance is harder to detect and harder to confirm and that the mechanistic basis is less well understood. Nevertheless, in the cases we examined, the pronounced health benefits associated with vaccination have largely been sustained. Thus, we contend that vaccine resistance is less of a concern than drug resistance because it is less likely to evolve and when it does, it is less harmful to human and animal health and well-being. Studies of pathogen strains that evolve the capacity to replicate and transmit from vaccinated hosts will enhance our ability to develop next-generation vaccines that minimize the risk of harmful pathogen evolution.


Assuntos
Resistência Microbiana a Medicamentos , Imunoterapia Ativa , Animais , Resistência a Medicamentos , Vírus da Hepatite B/imunologia , Humanos , Mardivirus/imunologia , Metapneumovirus/imunologia , Streptococcus pneumoniae/imunologia
19.
Proc Natl Acad Sci U S A ; 115(22): 5780-5785, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760095

RESUMO

Malaria remains among the world's deadliest diseases, and control efforts depend critically on the availability of effective diagnostic tools, particularly for the identification of asymptomatic infections, which play a key role in disease persistence and may account for most instances of transmission but often evade detection by current screening methods. Research on humans and in animal models has shown that infection by malaria parasites elicits changes in host odors that influence vector attraction, suggesting that such changes might yield robust biomarkers of infection status. Here we present findings based on extensive collections of skin volatiles from human populations with high rates of malaria infection in Kenya. We report broad and consistent effects of malaria infection on human volatile profiles, as well as significant divergence in the effects of symptomatic and asymptomatic infections. Furthermore, predictive models based on machine learning algorithms reliably determined infection status based on volatile biomarkers. Critically, our models identified asymptomatic infections with 100% sensitivity, even in the case of low-level infections not detectable by microscopy, far exceeding the performance of currently available rapid diagnostic tests in this regard. We also identified a set of individual compounds that emerged as consistently important predictors of infection status. These findings suggest that volatile biomarkers may have significant potential for the development of a robust, noninvasive screening method for detecting malaria infections under field conditions.


Assuntos
Biomarcadores/análise , Malária/diagnóstico , Pele/metabolismo , Compostos Orgânicos Voláteis/análise , Animais , Biomarcadores/metabolismo , Criança , Análise Discriminante , Humanos , Quênia , Aprendizado de Máquina , Malária/metabolismo , Modelos Estatísticos , Valor Preditivo dos Testes , Compostos Orgânicos Voláteis/metabolismo
20.
Mol Plant Microbe Interact ; 33(10): 1189-1195, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32748677

RESUMO

The Xo1 locus in the heirloom rice variety Carolina Gold Select confers resistance to bacterial leaf streak and bacterial blight, caused by Xanthomonas oryzae pv. oryzicola and X. oryzae pv. oryzae, respectively. Resistance is triggered by pathogen-delivered transcription activator-like effectors (TALEs) independent of their ability to activate transcription and is suppressed by truncated variants called truncTALEs, common among Asian strains. By transformation of the susceptible variety Nipponbare, we show that one of 14 nucleotide-binding, leucine-rich repeat (NLR) protein genes at the locus, with a zinc finger BED domain, is the Xo1 gene. Analyses of published transcriptomes revealed that the Xo1-mediated response is more similar to those mediated by two other NLR resistance genes than it is to the response associated with TALE-specific transcriptional activation of the executor resistance gene Xa23 and that a truncTALE dampens or abolishes activation of defense-associated genes by Xo1. In Nicotiana benthamiana leaves, fluorescently tagged Xo1 protein, like TALEs and truncTALEs, localized to the nucleus. And endogenous Xo1 specifically coimmunoprecipitated from rice leaves with a pathogen-delivered, epitope-tagged truncTALE. These observations suggest that suppression of Xo1-function by truncTALEs occurs through direct or indirect physical interaction. They further suggest that effector coimmunoprecipitation may be effective for identifying or characterizing other resistance genes.


Assuntos
Resistência à Doença/genética , Oryza , Doenças das Plantas/genética , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Clonagem Molecular , Humanos , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa