Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Weather Forecast ; 33(4): 909-931, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32934436

RESUMO

A simple adaptive thinning methodology for Atmospheric Infrared Sounder (AIRS) radiances is evaluated through a combination of Observing System Experiments (OSEs) and adjoint methodologies. The OSEs are performed with the NASA Goddard Earth Observing System (GEOS, version 5) data assimilation and forecast model. In addition, the adjoint-based forecast sensitivity observation impact technique is applied to assess fractional contributions of sensors in different thinning configurations. The adaptive strategy uses a denser AIRS coverage in a moving domain centered around tropical cyclones (TCs), sparser everywhere else. The OSEs consist of two sets of data assimilation runs that cover the period from September 1st to 10 November 2014, with the first 20 days discarded for spin-up. Both sets assimilate all conventional and satellite observations used operationally. In addition, one ingests clear-sky AIRS radiances, the other cloud-cleared radiances, each comprising multiple thinning strategies. Daily 7-day forecasts are initialized from all these analyses and evaluated with focus on TCs over the Atlantic and the Pacific. Evidence is provided on the effectiveness of this simple TC-centered adaptive radiance thinning strategy, in full agreement with previous theoretical studies. Specifically, global skill increases, and tropical cyclone representation is substantially improved. The improvement is particularly strong when cloud-cleared radiances are assimilated. Finally, the article suggests that cloud-cleared radiances, if thinned more aggressively than the currently used clear-sky radiances, could successfully replace them with large improvements in TC forecasting and no loss of global skill.

2.
J Atmos Ocean Technol ; 34(No 1): 73-100, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29674806

RESUMO

The National Aeronautics and Space Administration (NASA) Nature Run (NR), released for use in Observing System Simulation Experiments (OSSEs), is a 2-year long global non-hydrostatic free-running simulation at a horizontal resolution of 7 km, forced by observed sea-surface temperatures (SSTs) and sea ice, and inclusive of interactive aerosols and trace gases. This article evaluates the NR with respect to tropical cyclone (TC) activity. It is emphasized that to serve as a NR, a long-term simulation must be able to produce realistic TCs, which arise out of realistic large-scale forcings. The presence in the NR of the realistic, relevant dynamical features over the African Monsoon region and the tropical Atlantic is confirmed, along with realistic African Easterly Wave activity. The NR Atlantic TC seasons, produced with 2005 and 2006 SSTs, show interannual variability consistent with observations, with much stronger activity in 2005. An investigation of TC activity over all the other basins (eastern and western North Pacific, North and South Indian Ocean, and Australian region), together with relevant elements of the atmospheric circulation, such as, for example, the Somali Jet and westerly bursts, reveals that the model captures the fundamental aspects of TC seasons in every basin, producing realistic number of TCs with realistic tracks, life spans and structures. This confirms that the NASA NR is a very suitable tool for OSSEs targeting TCs and represents an improvement with respect to previous long simulations that have served the global atmospheric OSSE community.

3.
J Clim ; 29(18): 6727-6749, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29928071

RESUMO

Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally-constrained simulations with the NASA Goddard Earth Observing System version (GEOS-5) atmospheric general circulation model. The climate modes investigated are El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional Mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic), led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low- latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes, and not just to ENSO alone. Examination of seasonal predictability reveals that predictive skill of the three modes is limited over tropics to sub-tropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa