Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Med Chem ; 28(9): 115425, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32201192

RESUMO

Drug discovery requires the combination of medicinal chemistry and biology. In this article Chris Lipinski, the medicinal chemist, describes the chemical origins at Pfizer of Tolimidone1 the starting point for the repurposed MLR-1023 (Ochman et al., 2012). Andrew Reaume, the biologist, describes his motivation to develop a high quality (i.e. in vivo model) phenotypic screening platform as an ideal drug repositioning platform.


Assuntos
Ensaios de Triagem em Larga Escala , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Pirimidinonas/farmacologia , Quinases da Família src/metabolismo , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Hipoglicemiantes/química , Fenótipo , Pirimidinonas/química
2.
Drug Discov Today Technol ; 23: 45-52, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28647085

RESUMO

In vivo phenotypic screening and drug repositioning are strategies developed as alternatives to underperforming hypothesis-driven molecular target based drug discovery efforts. This article reviews examples of drugs identified by phenotypic observations and describes the use of the theraTRACE®in vivo screening platform for finding and developing new indications for discontinued clinical compounds. Clinical proof-of-concept for the platform is exemplified by MLR-1023, a repositioned compound that has recently shown significant clinical efficacy in Type 2 diabetes patients. These findings validate an in vivo screening approach for drug development and underscore the importance of alternatives to target and mechanism based strategies that have failed to produce adequate numbers of new medicines.


Assuntos
Descoberta de Drogas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Humanos , Pirimidinonas/uso terapêutico
3.
Curr Protoc ; 4(2): e989, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38363064

RESUMO

Acne vulgaris (acne) effects nearly 90% of all Western teenagers, and the only pharmaceutical class of agents to treat severe forms of this skin condition are the retinoids, which are well-described teratogens. Yet about 50% of the patients receiving this class of therapeutics are women of child-bearing age, in their peak years of reproductive potential. On this basis, there is a significant unmet medical need for agents to treat severe forms of acne that do not carry this liability. As a means to assess potential agents of this type, here we describe methods for estimating the relative amount of sebum that a mouse produces based on the water retention on fur following a thorough wetting procedure. We have shown that a compound that is clinically effective in reducing sebum production demonstrates activity in this model. The method is therefore useful for evaluating therapeutic candidates for reducing sebum production, which would in turn be useful for treating acne. We have broken the entire procedure down into two phases/two protocols, as listed below. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Pre-wash wet weight measurement Basic Protocol 2: Post-wash wet-weight measurement.


Assuntos
Acne Vulgar , Sebo , Adolescente , Humanos , Feminino , Camundongos , Animais , Masculino , Modelos Animais de Doenças , Acne Vulgar/tratamento farmacológico , Retinoides/uso terapêutico , Equilíbrio Hidroeletrolítico
4.
J Pharmacol Exp Ther ; 342(1): 23-32, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22431203

RESUMO

MLR-1023 [Tolimidone; CP-26154; 2(1H)-pyrimidinone, 5-(3-methylphenoxy)] is an allosteric Lyn kinase activator that reduces blood glucose levels in mice subjected to an oral glucose tolerance test (J Pharmacol Exp Ther 342:15-22, 2012). The current studies were designed to define the role of insulin in MLR-1023-mediated blood glucose lowering, to evaluate it in animal models of type 2 diabetes, and to compare it to the activities of selected existing diabetes therapeutics. Results from these studies show that in an acute oral glucose tolerance test MLR-1023 evoked a dose-dependent blood glucose-lowering response that was equivalent in magnitude to that of metformin without eliciting a hypoglycemic response. In streptozotocin-treated, insulin-depleted mice, MLR-1023 administration did not affect blood glucose levels. However, MLR-1023 potentiated the glucose-lowering activity of exogenously administered insulin, showing that MLR-1023-mediated blood glucose lowering was insulin-dependent. In a hyperinsulinemic/euglycemic clamp study, orally administered MLR-1023 increased the glucose infusion rate required to sustain blood glucose levels, demonstrating that MLR-1023 increased insulin receptor sensitivity. In chronically treated db/db mice, MLR-1023 elicited a dose-dependent and durable glucose-lowering effect, reduction in HbA1c levels and preservation of pancreatic ß-cells. The magnitude of effect was equivalent to that seen with rosiglitazone but with a faster onset of action and without causing weight gain. These studies show that MLR-1023 is an insulin receptor-potentiating agent that produces a rapid-onset and durable blood glucose-lowering activity in diabetic animals.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Pirimidinonas/farmacologia , Receptor de Insulina/metabolismo , Quinases da Família src/metabolismo , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Teste de Tolerância a Glucose/métodos , Homeostase/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Ratos
5.
J Pharmacol Exp Ther ; 342(1): 15-22, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22473614

RESUMO

2(1H)-pyrimidinone,5-(3-methylphenoxy) (MLR-1023) is a candidate for the treatment of type 2 diabetes. The current studies were aimed at determining the mechanism by which MLR-1023 mediates glycemic control. In these studies, we showed that MLR-1023 reduced blood glucose levels without increasing insulin secretion in vivo. We have further determined that MLR-1023 did not activate peroxisome proliferator-activated α, δ, and γ receptors or glucagon-like peptide-1 receptors or inhibit dipeptidyl peptidase-4 or α-glucosidase enzyme activity. However, in an in vitro broad kinase screen MLR-1023 activated the nonreceptor-linked Src-related tyrosine kinase Lyn. MLR-1023 increased the V(max) of Lyn with an EC(50) of 63 nM. This Lyn kinase activation was ATP binding site independent, indicating that MLR-1023 regulated the kinase through an allosteric mechanism. We have established a link between Lyn activation and blood glucose lowering with studies showing that the glucose-lowering effects of MLR-1023 were abolished in Lyn knockout mice, consistent with existing literature linking Lyn kinase and the insulin-signaling pathway. In summary, these studies describe MLR-1023 as a unique blood glucose-lowering agent and show that MLR-1023-mediated blood glucose lowering depends on Lyn kinase activity. These results, coupled with other results (J Pharmacol Exp Ther 342:23-32, 2012), suggest that MLR-1023 and Lyn kinase activation may be a new treatment modality for type 2 diabetes.


Assuntos
Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Hipoglicemiantes/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinonas/farmacologia , Quinases da Família src/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Dipeptidil Peptidase 4/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Teste de Tolerância a Glucose/métodos , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores de Glucagon/metabolismo , Transdução de Sinais/efeitos dos fármacos , alfa-Glucosidases/metabolismo , Quinases da Família src/metabolismo
6.
Front Pharmacol ; 13: 917968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003497

RESUMO

A target-based drug discovery strategy has led to a bias away from low molecular weight (MWT) drug discovery. Analysis of the ACS chemistry registration system shows that most low MWT drugs were first made in the time era before target-based drug discovery. Therapeutic activity among most low MWT drugs was identified in the era of phenotypic drug discovery when drugs were selected based on their phenotypic effects and before in vitro screening, mechanism of action considerations and experiences with fragment screening became known. The common perception that drugs cannot be found among low MWT compounds is incorrect based on both drug discovery history and our own experience with MLR-1023. The greater proportion of low MWT compounds that are commercially available compared to higher MWT compounds is a factor that should facilitate biology study. We posit that low MWT compounds are more suited to identification of new therapeutic activity using phenotypic screens provided that the phenotypic screening method has enough screening capacity. On-target and off-target therapeutic activities are discussed from both a chemistry and biology perspective because of a concern that either phenotypic or low MWT drug discovery might bias towards promiscuous compounds that combine on-target and off-target effects. Among ideal drug repositioning candidates (late-stage pre-clinical or clinically-experience compounds), pleiotropic activity (multiple therapeutic actions) is far more likely due to on-target effects arising where a single target mediates multiple therapeutic benefits, a desirable outcome for drug development purposes compared to the off-target alternative. Our exemplar of a low MWT compound, MLR-1023, discovered by phenotypic screening and subsequently found to have a single mechanism of action would have been overlooked based on current era medicinal chemistry precedent. The diverse therapeutic activities described for this compound by us, and others arise from the same pleiotropic lyn kinase activation molecular target. MLR-1023 serves as a proof-of-principle that potent, on target, low MWT drugs can be discovered by phenotypic screening.

7.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34832978

RESUMO

A glucose-lowering medication that acts by a different mechanism than metformin, or other approved diabetes medications, can supplement monotherapies when patients fail to meet blood glucose goals. We examined the actions underlying the effects of an insulin sensitizer, tolimidone (MLR-1023) and investigated its effects on body weight. Diet-induced obesity (CD1/ICR) and type 2 diabetes (db/db) mouse models were used to study the effect of MLR-1023 on metabolic outcomes and to explore its synergy with menthol. We also examined the efficacy of MLR-1023 alone in a clinical trial (NCT02317796), as well as in combination with menthol in human adipocytes. MLR-1023 produced weight loss in humans in four weeks, and in mice fed a high-fat diet it reduced weight gain and fat mass without affecting food intake. In human adipocytes from obese donors, the upregulation of Uncoupling Protein 1, Glucose (UCP)1, adiponectin, Glucose Transporter Type 4 (GLUT4), Adipose Triglyceride Lipase (ATGL), Carnitine palmitoyltransferase 1 beta (CPT1ß), and Transient Receptor Potential Melastin (TRPM8) mRNA expression suggested the induction of thermogenesis. The TRPM8 agonist, menthol, potentiated the effect of MLR-1023 on the upregulation of genes for energy expenditure and insulin sensitivity in human adipocytes, and reduced fasting blood glucose in mice. The amplification of the thermogenic program by MLR-1023 and menthol in the absence of adrenergic activation will likely be well-tolerated, and bears investigation in a clinical trial.

8.
Neurobiol Aging ; 23(3): 335-48, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11959395

RESUMO

To investigate the consequences of mutant presenilin-1 (PS-1) expression under the control of the normal PS-1 gene, a gene-targeted mouse bearing the FAD mutation P264L was made. Gene-targeted models are distinct from transgenic models because the mutant gene is expressed at normal levels, in the absence of the wild-type protein. PS-1(P264L/P264L) mice had normal expression of PS-1 mRNA, but levels of the N- and C-terminal protein fragments of PS-1 were reduced while levels of the holoprotein were increased. When crossed into Tg(HuAPP695.K670N/M671L)2576 mice, the PS-1(P264L) mutation accelerated the onset of amyloid (Abeta) deposition in a gene-dosage dependent manner. Tg2576/PS-1(P264L/P264L) mice also had Abeta deposition that was widely distributed throughout the brain and spinal cord. APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mice had elevated levels of Abeta42, sufficient to cause Abeta deposition beginning at 6 months of age. Abeta deposition increased linearly over time in APP(NLh/NLh)/PS-1(P264L/P264L) mice, whereas the increase in Tg2576 mice was exponential. The APP(NLh/NLh)/PS-1(P264L/P264L) double gene-targeted mouse represents an animal model that exhibits Abeta deposition without overexpression of APP.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/biossíntese , Precursor de Proteína beta-Amiloide/genética , Marcação de Genes , Proteínas de Membrana/genética , Mutação/genética , Fragmentos de Peptídeos/biossíntese , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Linhagem Celular , Feminino , Marcação de Genes/métodos , Genótipo , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , Dados de Sequência Molecular , Neocórtex/metabolismo , Neocórtex/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Gravidez , Presenilina-1 , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa